



# The 2<sup>nd</sup> National Forest Inventory Survey in Lao People's Democratic Republic

# August 2017

Department of Forestry, Ministry of Agriculture and Forestry, Lao PDR Sustainable Forest Management and REDD+ Support Project (F-REDD), JICA

# Contents

| 1. Int | roduction1                                                 |
|--------|------------------------------------------------------------|
| 1.1    | Background1                                                |
| 1.2    | Objectives 2                                               |
| 2. Pr  | eparation                                                  |
| 2.1    | Determining the number of survey plots                     |
| 2.2    | Distribution of survey plots4                              |
| 2.3    | Obtaining permission and list of equipment for the survey5 |
| 2.4    | Cost for 2 <sup>nd</sup> NFI                               |
| 2.5    | Training and field work supervision 6                      |
| 3. Su  | rvey method7                                               |
| 3.1    | Establishment of plot7                                     |
| 3.2    | Field measurement                                          |
| 3.3    | Data entry, compilation and analysis 10                    |
| 4. Su  | rvey implementation11                                      |
| 4.1    | Implementation structure (team organization)11             |
| 4.2    | Survey schedule                                            |
| 4.3    | Monitoring12                                               |
| 5. Re  | esults                                                     |
| 5.1    | National Level                                             |
| 5.2    | ER-Program Provinces19                                     |
| 5.3    | Quality Control (QC)                                       |
| 6. Re  | commendations                                              |
| 6.1    | NFI Design                                                 |
| 6.2    | Plot Identification 24                                     |
| 6.3    | Field Implementation                                       |
| 7. Re  | ferences                                                   |
| 8. Att | achment                                                    |
| 8.1    | Activity photos                                            |
| 8.2    | Equipment list                                             |
| 8.3    | Survey Plot Information                                    |
| 8.4    | QC Survey Plot Information                                 |

## Acronyms

| Acronym           | Name                                                                      |
|-------------------|---------------------------------------------------------------------------|
| ADB               | Asian Development Bank                                                    |
| AGB               | Above Ground Biomass                                                      |
| В                 | Bamboo                                                                    |
| BGB               | Below Ground Biomass                                                      |
| CF                | Coniferous Forest                                                         |
| CI                | Confidence Interval                                                       |
| CliPAD            | Climate Protection through Avoided Deforestation                          |
| DAFO              | District Agriculture and Forestry Office                                  |
| DBH               | Diameter at Breast Height                                                 |
| DD                | Dry Dipterocarps Forest                                                   |
| DOF               | Department of Forestry                                                    |
| DOFI              | Department of Forestry Inspection                                         |
| DW                | Dead Wood                                                                 |
| EF                | Emission Factor                                                           |
| EG                | Evergreen Forest                                                          |
| ER-PD             | Emission Reduction Program Document                                       |
| FCPF              | Forest Carbon Partnership Facility                                        |
| FIM               | Forest Information Management Project                                     |
| FIPD              | Forest Inventory and Planning Division                                    |
| FREL/ FRL         | Forest Reference Emission Level /Forest Reference Level                   |
| GIS               | Geographic Information System                                             |
| GPS               | Global Positioning System                                                 |
| ITPP              | Industrial Tree Plantation Project                                        |
| JICA              | Japan International Cooperation Agency                                    |
| JICS              | Japan International Cooperation System                                    |
| Lao PDR           | The Lao People's Democratic Republic                                      |
| MAF               | Ministry of Agriculture and Forestry                                      |
| МСВ               | Mixed Coniferous and Broadleaved Forest                                   |
| MDF               | Mixed Deciduous Forest                                                    |
| NAFES             | National Agriculture and Forestry Extension Service                       |
| NAFRI             | National Agriculture and Forestry Research Institute                      |
| NFI               | National Forest Inventory                                                 |
| NFIS              | Capacity Development Project for Establishing National Forest Information |
|                   | System for Sustainable Forest Management and REDD+                        |
| NTFP              | Non Timber Forest Products                                                |
|                   | Non Tree Vegetation                                                       |
|                   | Provincial Agriculture and Forestry Office                                |
| PAREDD            | Participatory Land and Forest Management Project for Reducing             |
|                   | Devolesialion in Lao PDK                                                  |
| PAN NPA           | Prince Knao Kouay National Protected Area                                 |
| rðus              | Cuality Control                                                           |
|                   | Quality Control                                                           |
| REDU <sup>+</sup> | Reducing Emissions from Deforestation and Porest Degradation and the      |
| <b>SD</b>         | Standard Deviation                                                        |
| 30                |                                                                           |

| SE     | Standard Error                                        |
|--------|-------------------------------------------------------|
| SOP    | Standard Operating Procedure                          |
| SSUs   | Secondary Sampling Units                              |
| SUFORD | Sustainable Forest Development Project                |
| UNFCCC | United Nations Framework Convention on Climate Change |
| UXO    | Unexploded Ordnance                                   |

## 1. Introduction

## 1.1 Background

In Lao PDR, various field survey of forests in the country have taken place in the past (Table 1) including what is regarded as the country's first National Forest Inventory (1<sup>st</sup> NFI) conducted in 1991-1999. The primary objective of the 1<sup>st</sup> NFI was standing timber volume estimation. Triggered by Lao PDR's participation in the Reducing Emissions from Deforestation and Forest Degradation – Plus (REDD+) initiative under the UN Framework Convention on Climate Change (UNFCCC), a second NFI (2<sup>nd</sup> NFI) was considered necessary, and commissioned by the Government, and implemented by the Forest Inventory and Planning Divisions (FIPD) of the Department of Forestry within the Ministry of Agriculture and Forestry (MAF). Technical and financial support was provided from JICA. Lao PDR plans to submit its Forest Reference Emission Level and Forest Reference Level (FREL/FRL) for REDD+ to the UNFCCC in 2018, using data from the 2<sup>nd</sup> NFI.

This report summarizes the objectives, methods and results of the  $2^{nd}$  NFI conducted over the two dry seasons of  $2015-2016^1$  and 2016-2017.

| Survey<br>name        | Main<br>objective              | Survey<br>period | Surveyed area<br>(provinces)                                                                                           | Implementing<br>Agencies                            | Supporting<br>projects /<br>donors |
|-----------------------|--------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------|
|                       |                                |                  | National level                                                                                                         |                                                     |                                    |
| 1st NFI               | Timber<br>volume<br>estimation | 1991-1999        | Entire country                                                                                                         | DOF/FIPD                                            | Sweden                             |
| 2 <sup>nd</sup> NFI   | Biomass stock measurement      | 2015-2017        | Entire country                                                                                                         | DOF/FIPD                                            | JICA, FCPF<br>Readiness            |
|                       |                                |                  | Project-based                                                                                                          |                                                     |                                    |
| SUFORD<br>(Phase 1-3) | Timber<br>volume<br>estimation | 2003-2017        | Khammouane,<br>Savannakhet,<br>Salavanh,<br>Champasack,<br>Xekong, Attapeu,<br>Bolikhamxay,<br>Vientiane,<br>Xayabouly | DoF, DOFI,<br>NAFES, NAFRI,<br>PAFO, DAFOs,<br>VFUs | Worldbank,<br>Finland              |

#### Table 1: Brief summary of forest inventories conducted in Lao PDR

 $<sup>^1</sup>$  The survey for the dry season 2015-2016 actually started from March 2016 after the technical support from F-REDD project became available.

| Industrial | Timber        | 2006      | Bolikhamxay,   | ITPP         | ADB      |
|------------|---------------|-----------|----------------|--------------|----------|
| Tree       | volume        |           | Champasack     |              |          |
| Plantation | estimation    |           | Salavanh,      |              |          |
| Project    |               |           | Savannakhet,   |              |          |
| (ITPP)     |               |           | Vientiane      |              |          |
| Clipad     | Biomass stock | 2009-2018 | Xayabouly      | MAF, DoF,    | GiZ, KfW |
|            | measurement   |           | Houaphanhh     | PAFO, DAFO   |          |
| PAREDD     | Biomass stock | 2009-2014 | Luang Prabang  | NAFES, PAFO, | JICA     |
|            | measurement   |           |                | DAFO         |          |
| FIM        | Biomass stock | 2010-2013 | Entire country | DOF/FIPD     | JICS     |
|            | measurement   |           |                |              |          |

## 1.2 Objectives

The objectives of the 2nd NFI was to survey the forest biomass<sup>2</sup> of the five natural forest classes (i.e. Evergreen forest, Mixed Deciduous forest, Dry Dipterocarp forest, Coniferous forest, and Mixed Conifer and & Broadleaf forests). Forest plantations were excluded from the survey scope due to its relatively small area coverage and availability of applicable IPCC default factors for biomass estimation. Bamboo and Regenerating Vegetation classes were also excluded as they fall outside the national forest definition. The scope of the 2<sup>nd</sup> NFI covered the entire country, but there was specific focus on the six Northern provinces that were pre-selected as the scope for the Emissions Reduction Program (ER Program) of Lao PDR, under the Carbon Fund of the Forest Carbon Partnership Facility (FCPF).

Prior to the implementation of the  $2^{nd}$  NFI, a pilot survey was conducted in Khammouane province<sup>3</sup>, and a manual for the NFI was developed<sup>4</sup>.

Quality Control (QC) was also conducted by a team of experienced FIPD staff to remeasure 10% of the total number of survey plots (i.e. 58 plots out of the total 583 plots). The QC survey plots were distributed to secure a minimum 10% for each forest type at the national-level, and 10% of the plots for the 6 Northern provinces targeted in the ER-Program. The QC survey followed the same methods with the main survey.

<sup>2</sup> The main target of the survey was to measure the forest biomass, however, other information, such as observed disturbances and NTFP (Non-Tree Forest Production) were also recorded.

<sup>&</sup>lt;sup>3</sup> Lao PDR National Forest Inventory Standard Operating Procedures (SOP) Manual for Terrestrial Carbon Measurement

## 2. Preparation

#### 2.1 Determining the number of survey plots

The number of survey plots for the 2<sup>nd</sup> NFI (excluding the QC survey) was determined based on parameters of 'mean', 'standard deviation' and 'target precision' for each of the five forest classes. The 'mean' and 'standard deviation' of each forest class was derived from the 1<sup>st</sup> NFI data, while the 'target precision', was based on the expert judgement of FIPD and international experts after examining the existing data. The number of survey plots was calculated by applying the equation developed by Winrock International through the "Sampling Plot Calculator" tool<sup>5</sup>.

number of plots for strata = 
$$(z * \frac{\text{standard deviation}}{t * x})^2$$

Where:

z= score for the required confidence interval t = level of error x= the mean estimated biomass value of a strata (t dry matter ha-1)

The preliminary target number of survey plots for each forest class are in Table 2.

| Forest class                     | Preliminary<br>plot number<br>(n) | Target precision     |
|----------------------------------|-----------------------------------|----------------------|
| Evergreen forest                 | 70                                | <10% Error at 90% CI |
| Mixed Deciduous forest           | 200                               | <10% Error at 90% CI |
| Dry Dipterocarp forest           | 120                               | <10% Error at 90% CI |
| Coniferous forest                | 50                                | <20% Error at 90% CI |
| Mixed Conifer & Broadleaf forest | 30                                | <20% Error at 90% CI |
| Total                            | 470                               |                      |

#### Table 2 : Preliminary target number of survey plots

To be able to estimate carbon stocks not only for the national scale, but also for the six provinces of the ER Program, an additional 89 plots were added to maintain the same level of precision for plots at the two scales for estimating the carbon stock. The final number of survey plots are as in Table 3.

<sup>&</sup>lt;sup>5</sup> Winrock International, sample plot calculator (Excel), <<u>https://www.winrock.org/document/winrock-sample-plot-calculator-spreadsheet-tool/</u>>.

#### Table 3: Final number of survey plots

| Forest class                     | Final plot<br>number<br>(n) | Number of<br>plots added<br>(n) |
|----------------------------------|-----------------------------|---------------------------------|
| Evergreen forest                 | 95                          | 25                              |
| Mixed Deciduous forest           | 264                         | 64                              |
| Dry Dipterocarp forest           | 120                         |                                 |
| Coniferous forest                | 50                          |                                 |
| Mixed Conifer & Broadleaf forest | 30                          |                                 |
| Total                            | 559                         | 89                              |

## 2.2 Distribution of survey plots

The sampling design started from selecting the primary sampling units (PSUs) and then the secondary sampling units (SSUs). This approach ensures that any location has an equal probability of being sampled. The PSUs were chosen by applying systematic sampling with random approach. Grid cells were placed across the areas to be sampled in a randomly selected orientation. The grid cells will then serve as the 'primary sampling unit' (PSUs). Once the PSUs are chosen, a particular location within the PSU is randomly chosen to initiate field sampling. This is referred to in the figure below as "SSU1".





Figure 1: Example of selected PSU-grids in dashed lines and selected PSUs (polygons) with SSUs (dots) assigned within. Note, some PSU-grids may randomly be selected for two different forest classes.

A manual was developed outlining in detail the methods and procedures; "Lao PDR NFI Standard Operating Procedures (SOP); Manual for Terrestrial Carbon Measurement"<sup>6</sup>.

The result of survey plot distribution is shown in Figure 2. The detailed information of the surveys plot are shown in Annex 8.3.



Figure 2: Surveyed plots in the 2<sup>nd</sup> NFI

2.3 Obtaining permission and list of equipment for the survey

A proposal for the 2<sup>nd</sup> NFI was prepared by FIPD and submitted to MAF for approval. The proposal included information related to the purpose of the survey, survey site (province), survey method, survey team members and budget. Then, FIPD sent request

<sup>&</sup>lt;sup>6</sup> The original version was developed by "Capacity Development Project for Establishing National Forest Information System for Sustainable Forest Management and REDD+ (NFIS)" funded by JICA, and modified for the purpose of the 2<sup>nd</sup> NFI.

letters to PAFO and DAFO of each province with the MAF approval letter, to request for their support in the survey implementation. This process took four weeks. A summary list of the equipment used for the survey is shown in attachment 8.2.

## 2.4 Cost for 2<sup>nd</sup> NFI

The total cost for the 2<sup>nd</sup> NFI, which include per diems, accommodation and transportation fees for the survey teams, equipment and miscellaneous costs was approximately USD 470,000. This cost was shared among projects including F-REDD under JICA<sup>7</sup>, FCPF Readiness, and Forestry Resource Development Fund of DOF.

#### 2.5 Training and field work supervision

Before starting the field surveys, trainings were provided to the survey team as well as the QC team. The trainings were conducted in mid-February and late October 2016 respectively. The trainings consisted of three components as summarized below:

- 1. **Classroom training**: the training aimed at familiarizing the field survey teams with the SOPs for the NFI, and to ensure the teams were capable and confident with the use of tablet-based data collection system and other equipment for the survey.
- 2. Field-based training: the field based training was conducted in Phou Khao Kouay National Protected Area (PKK NPA). The training took 2.5 days and included: (i) a half-day session for all the field survey teams to carry out the survey following the SOP process in an experimental sub-plot; (ii) a full-day session where two field survey teams worked together to navigate themselves to, and measure two sub-plots; and (iii) a full-day session where each field team navigated themselves to, and measured one entire plot which consists of four sub-plots.
- 3. Field work supervision: The four field teams which conducted the field survey in dry the season 2015-2016, and four out of six field teams which conducted the field survey in dry season 2016-2017 were assisted by the experts from F-REDD and its sub-contractors. The two teams which did not receive supervision during its field survey in dry season 2016-2017 were considered as the most experienced teams, therefore did not require additional support.

 $<sup>^7</sup>$  Excluding the costs of F-REDD experts who technically supported the  $2^{\rm nd}$  NFI.

## 3. Survey method<sup>8</sup>

#### 3.1 Establishment of plot

The survey used a 'floating' clustered design with four sub-plots located in one cluster. A sub-plot consists of nested tree-plots with different nested radius and objects to measure. In addition to trees, for the sampling of non-tree pools, lying dead wood was measured in all sub-plots, and other non-tree vegetation (NTV) were measured in the clip-plots. The plot design is described below.

In the 'floating' cluster nested tree-plot design, all sampling at each sampling point takes place only in locations under the same stratum. The location of the 'anchor point' and of each nested tree-plots was determined prior to field sampling and in a GIS environment. Due to the highly fragmented landscape and the terrain causing some locations to require significant time to access, a set of four potential subplot locations are chosen in GIS. In GIS, for a given stratum an Anchor Point is placed using the two-staged sampling design described above. The first tree-plot center (tree-plot A) is then placed on this Anchor Point. Three additional points (B, C, D) are then randomly placed within the given stratum within a 300 m radius of the Anchor Point, but no closer than 75 m from each other or the Anchor point.



Figure 3: A "floating" cluster plot with a fixed center subplot. Red lines represent 40 m lying deadwood transects while blue boxes represent clip plots (50cm\*50cm) for NTV.

<sup>&</sup>lt;sup>8</sup> The detail methods and procedures are described in "Lao PDR NFI Standard Operating Procedure (SOP) Manual for Terrestrial Carbon Measurement".

#### Nested Tree-plots

The design of the nested tree-plots are shown in Figure 4 below.



Figure 4 Nest radius of nested tree plots<sup>9</sup>

#### Other vegetation and carbon pools

NTV was measured in the clip plots located adjuscent to the nested tree plots as shown in Figure 3 above and following the SOP process.

#### 3.2 Field measurement

In the established plot, trees, saplings, dead wood (standing and lying), bamboo and NTV were measured.

#### Trees

Record the species name and tree diameter at breast height (DBH 1.3m). Tree diameters should be measured to the nearest 0.1 cm (e.g. diameter of 10.2 cm *not* 10 cm).

 $<sup>^9</sup>$  This is the design for a site condition when slope <10%. 'Tree DBH Groups" are the size classes of trees to be measured for each nest. 'Sapling' is defined as tree with height >1.3 m and DBH of <10 cm.

## Saplings

Count the number of saplings (trees <10 cm DBH, and >1.3 m height) in the smallest nest (2 meter radius) and record on the data sheet.

#### <u>Bamboo</u>

Measure the bamboo in the second smallest nest (6m radius). Count the number of culms in the patch, and 5 culms should be randomly selected and their DBH measured with a caliper. Each of the 5 selected culms should be cut at their base and pulled out from the patch to measure their length with a tape measure.

#### Dead wood (Standing)

Standing dead woods were separated into two categories, i.e: Class 1 - dead trees with twigs and branches; and Class 2 -dead trees with large branches or no branches, and tree stumps. The two classes were measured with the following methods.

**Class 1 dead trees**: measure the trees using the same methods with living trees, and mark them as 'dead' on the datasheet.

**Class 2 dead trees (standing)**: measure DBH using same methods for living trees. Measure the diameter at the base of the tree (Dbase). Measure height of stem (H) both using a clinometer and measuring tape or laser range finder or through direct measurement using tape measure. Measure diameter at top of the stump (Dtop,) through direct measurement. Alternatively, do not take a measurement at the top of the stump and write 'None' or 'NA' on datasheet.

Class 2 dead trees (stumps): stumps are measured in all sub-plots.

Three parameters were measured: Height (H)<sup>10</sup>; Smallest Diameter (D<sub>1</sub>) - smallest diameter across the top of the stump;  $D_2$  - diameter at 90° angle to  $D_1$ .

## Dead wood (Lying)

Lying dead wood is defined as any woody materials on the ground with a diameter >10 cm. Along the length of the line, measure the diameter and length of each intersecting piece of coarse dead wood (> 10 cm diameter).

 $<sup>^{10}</sup>$  Stumps with heights > 1.3m are considered as standing dead woods.

#### Non tree vegetation (NTV)

All non-tree vegetation (NTV) in the clip plots were measured. These included shrubs and herbaceous vegetation but excluding bamboo. NTV were cut at their base. All the collected NTV were put in the sample bag and weighed, and the samples were sent to the laboratory to be dried and analyzed on their wet-dry ratio.

## 3.3 Data entry, compilation and analysis

As the first step of the data entry and analysis process, the field measurement data were collected using the ODK form pre-installed in an android-based tablet computer. After all the measurement items at a survey cluster are collected, the data were entered into the form by the survey team and automatically sent to the Ona cloud-based server when the tablet comes into the range of 3G internet or Wi-Fi. All the data collected from the survey teams were aggregated at the server into a single CSV file and made available for downloading.

"NFI-Dash" is an application developed to support the data collection and analysis for the NFI; its functions are shown in Figure 5 below. It allows the calculation of the results of and presents them graphically through easy-to-use interface. The NFI – Dash is a script based web application written in statistical program language "R" and the R Package "Shiny".



Figure 5 : Overview of the data collection and analysis process

When the NFI-Dash application is opened in a web-browser, it automatically retrieves the raw data from the Ona server, uses the script "NFI-Calc"<sup>11</sup> to preform various types of analysis and automatically generates a summary of the data collected to date. Two additional scripts ("NFI-Server" and "NFI-Interface") allow for developing various summary tables and graphs, and display the plot locations on a map.

# 4. Survey implementation

4.1 Implementation structure (team organization)

The field survey team was composed of the following members.

#### Table 4: Survey team composition

| Institution                                     | Number of staff |
|-------------------------------------------------|-----------------|
| FIPD (Forest Inventory and Planning Division)   | 3               |
| Driver                                          | 2               |
| PAFO (Provincial Agriculture and Forest Office) | 1               |
| DAFO (District Agriculture and Forest Office)   | 1               |
| Villager                                        | 2               |

The survey for the 2015-2016 dry season was conducted by 4 teams. The survey for the 2016-2017 dry season was conducted by 6 teams including the 4 teams who implemented the survey in previous dry season.

## 4.2 Survey schedule

Forest Type Maps (FTM) were used to distribute the survey plots. For the survey of the dry season of 2015-16, a portion of the plots for the three natural forest classes (i.e. Evergreen forest (EG), Coniferous forest (CF) and Mixed Coniferous and Broadleaf Forest (MCB)) were surveyed, using the FTM 2010 for distributing the sample plots, as FTM 2015 was not yet completed at the time. The remainder of the three natural forest classes above-mentioned, and all Mixed Deciduous forest (MD) and Dry Dipterocarp forest (DD) forest classes were surveyed in the dry season of 2016-17 based on FTM 2015 for distributing the sampling plots.

<sup>&</sup>lt;sup>11</sup> The "NFI – Calc" script is the backbone of the application and was developed and thoroughly tested during the NFI piloting phase in 2015, to ensure all possible quality issues were automatically flagged before moving to the full NFI implementation in 2016 and 2017. The first version of "NFI – Calc" during piloting stage essentially scripted the equivalent of all the calculations conducted in an excel spreadsheet that was used for the data analysis. Thus, each step of the "translation" process from excel to the script was verified by comparing the results of the script with the results of the spreadsheet.

#### Table 5: Survey schedule

| Year      | Schedule                   |
|-----------|----------------------------|
| 2015-2016 | March-2016 to June-2016    |
| 2016-2017 | October-2016 to April-2017 |

## 4.3 Monitoring

The web application "NFI – Dash" was used to monitor the progress and data quality through its web-based browser. Through frequent confirmation of the progress, the survey team were able to survey the optimal number of survey clusters and plots, which led to efficient delivery of the entire  $2^{nd}$  NFI.

# 5. Results

This chapter presents the analyzed results of the  $2^{nd}$  NFI for the national level, for the areas targeted under the ER-Program, and also the QC.

# 5.1 National Level

## <u>Forest types</u>

Across the five forest classes surveyed, among the 559 plots distributed, a total of 420 plots were included in the estimation of forest carbon stocks. The remaining 139 plots were not included because of their land condition (contrary to the identification from the FTM, the land was actually found as non-forest in the field survey), or in case of a split classification of forest classes for a plot (i.e. two sub-plots being identified as one forest class and the other two sub-plots identified as another forest class). The locations of surveyed plots by forest class are shown in Figure 6.



Figure 6: Surveyed plot by forest class in the 2nd NFI

The Below Ground Biomass (BGB) was estimated by using the best available Root-to-Shoot (R/S) ratios corresponding to each forest class and their average AGB.

| Forest type | AGB threshold      | Root-to-Shoot<br>ratio (R/S ratios) | Source                                              |
|-------------|--------------------|-------------------------------------|-----------------------------------------------------|
| EG, DD, MD, | AGB < 125t/ha      | 0.20                                | IPCC GL 2006 for National Greenhouse                |
| and MCB     | AGB > 125t/ha      | 0.24                                | Gas Inventories (Chapter 4: Forest land, Table 4.4) |
| CF          | AGB < 50t/ha       | 0.46                                | 2003 IPCC Good Practice Guidance for                |
|             | AGB = 50 - 150t/ha | 0.32                                | LULUCF (Chapter 3: LULUCF Sector                    |
|             | AGB > 150t/ha      | R/S = 0.23                          | Good Practice Guidance, Table 3                     |
|             |                    |                                     | A.1.8)                                              |

|                          |           | -           | -        |           |
|--------------------------|-----------|-------------|----------|-----------|
| Tabla G · Daat ta Shaat  | ration by | foract typa | and ACP  | throchold |
| 1 abie 0 . RUUL-LU-SHUUL |           | IULESLIVDE  | allu AGD | unesnoiu  |
|                          |           |             |          |           |

The estimated biomass was converted into carbon stock with the generic formula below:

 $Ci = TBi \times CF$ 

Where:

TBi = total biomass of plot i (include AGB and BGB), expressed in kg.

CF = IPCC default carbon fraction value 0.46 or 0.47 depending on the land/forest class (2006 IPCC GL Volume 4, Chapter 4)

The resulting average carbon stock by forest class and analytical considerations are shown in Table 7. The analysis includes three carbon pools, namely Above Ground Biomass (AGB), BGB and Deadwood (DW) in order to assess the significance of DW (as explained later).

The DD forests represent the lowest carbon stock value of 46.64 tC/ha among all forest classes. The MD and CF forests showed similar carbon stocks of 95.56 tC/ha and 103.83 tC/ha. The MCB forests, by comparison held 125.43 tC/ha, while the larger and generally more remote EG type held 208.17 tC/ha.

| Forest<br>Type | Ν      | Carbon stock<br>(tC/ha) | S.D.<br>(tC/ha) | S.E.<br>(tC/ha) | Cl<br>(95%) | Uncertainty<br>(95%) | Minimum<br>(tC/ha) | Maximu<br>m<br>(tC/ha) |
|----------------|--------|-------------------------|-----------------|-----------------|-------------|----------------------|--------------------|------------------------|
| Including      | AGB, B | GB and DW               |                 |                 |             |                      |                    |                        |
| EG             | 23     | 208.17                  | 71.26           | 14.86           | 29.13       | 13.99                | 91.94              | 372.29                 |
| MD             | 227    | 95.56                   | 38.15           | 2.53            | 4.96        | 5.19                 | 19.92              | 239.66                 |
| DD             | 101    | 46.64                   | 19.42           | 1.93            | 3.79        | 8.12                 | 13.15              | 147.06                 |
| CF             | 24     | 103.83                  | 40.37           | 8.24            | 16.15       | 15.56                | 32.98              | 189.22                 |
| МСВ            | 45     | 125.43                  | 91.90           | 13.70           | 26.85       | 21.41                | 28.34              | 464.44                 |
| Including      | AGB an | d BGB                   |                 |                 |             |                      |                    |                        |
| EG             | 23     | 200.03                  | 68.40           | 14.26           | 27.95       | 13.98                | 90.28              | 362.03                 |
| MD             | 227    | 87.69                   | 33.92           | 2.25            | 4.41        | 5.03                 | 19.92              | 238.16                 |
| DD             | 101    | 43.18                   | 19.22           | 1.91            | 3.75        | 8.68                 | 10.47              | 147.06                 |
| CF             | 24     | 92.60                   | 30.50           | 6.23            | 12.20       | 13.18                | 32.98              | 139.66                 |
| МСВ            | 45     | 114.74                  | 87.46           | 13.04           | 25.55       | 22.27                | 27.78              | 464.44                 |

#### Table 7: Nation-wide total carbon stocks by forest type

In distributing the sample plots, a minimum of 30 plots per forest class was targeted for. This target was not achieved for the CF and EG classes, despite the intentions, as a large number of the pre-selected plots turned not to be CF and EG classes in the field (most often turning out to be MD class). Notwithstanding, the uncertainty of the measurement results for these two classes were well below the maximum uncertainty threshold of 20%.

MCB forests which has 45 plots resulted in uncertainty of 21.41% at 95% CI. Relatively high variance in this class is assumed to be due to the difference of the MCB forests surveyed. The MCB forests in Nakai plateau area of Khammouane province showed higher biomass compared to the MCB forests of Xiengkhouang province where the forests were less dense due to their ecological nature or possibly due to human disturbance. The MCB standard deviation (91.90 tC/ha) and C min/max plot range of 28 - 464tC/ha are illustrative of the level of variability in these strata.

#### Carbon Pools

The 2<sup>nd</sup> NFI was the first nation-wide survey which collected the biomass data by forest classes allowing detailed analysis and estimation of carbon stock within the carbon pools measured. Table 8 below shows the detailed breakdown of carbon stock by different components of a carbon pool: AGB consisting of living trees, saplings, bamboo and non-tree vegetation (NTV), BGB, and DW consisting of standing deadwood, lying deadwood and stumps. This allows assessment of the significance of each carbon pool and their impacts to CO2 emission and removals.

| Carbon pool and<br>its components Forest Class |     | N   | Carbon stock<br>(tC/ha) | S.D.<br>(tC/ha) | % of forest<br>class |
|------------------------------------------------|-----|-----|-------------------------|-----------------|----------------------|
| AGB                                            | EG  | 23  | 161.57                  | 55.05           | 77.62%               |
|                                                | MDF | 227 | 72.11                   | 27.26           | 75.45%               |
|                                                | DD  | 101 | 35.91                   | 15.44           | 76.99%               |
|                                                | CF  | 24  | 73.71                   | 25.87           | 70.99%               |
|                                                | МСВ | 45  | 93.25                   | 70.18           | 74.35%               |
| Living trees                                   | EG  | 23  | 160.63                  | 55.07           | 77.16%               |
|                                                | MDF | 227 | 67.82                   | 27.37           | 70.97%               |
|                                                | DD  | 101 | 34.28                   | 15.5            | 73.50%               |
|                                                | CF  | 24  | 72.23                   | 25.57           | 69.57%               |
|                                                | МСВ | 45  | 91.98                   | 70.23           | 73.33%               |
| Saplings                                       | EG  | 23  | 0.42                    | 0.16            | 0.20%                |
|                                                | MDF | 227 | 0.65                    | 0.37            | 0.68%                |
|                                                | DD  | 101 | 0.32                    | 0.24            | 0.69%                |
|                                                | CF  | 24  | 0.3                     | 0.26            | 0.29%                |
|                                                | MCB | 45  | 0.48                    | 0.39            | 0.38%                |
| Bamboo                                         | EG  | 23  | 0.03                    | 0.1             | 0.01%                |
|                                                | MDF | 227 | 3.02                    | 7.92            | 3.16%                |
|                                                | DD  | 101 | 0.24                    | 1.14            | 0.51%                |

#### Table 8. Nation-wide carbon stock by carbon pool and forest type

|             | CF  | 24  | 0.11  | 0.51  | 0.11%  |
|-------------|-----|-----|-------|-------|--------|
|             | МСВ | 45  | 0.07  | 0.25  | 0.06%  |
| NTV         | EG  | 23  | 0.5   | 0.2   | 0.24%  |
|             | MDF | 227 | 0.62  | 0.44  | 0.65%  |
|             | DD  | 101 | 1.06  | 0.44  | 2.27%  |
|             | CF  | 24  | 1.07  | 0.72  | 1.03%  |
|             | MCB | 45  | 0.72  | 0.45  | 0.57%  |
| BGB         | EG  | 23  | 38.46 | 13.36 | 18.47% |
|             | MDF | 227 | 15.58 | 6.88  | 16.30% |
|             | DD  | 101 | 7.27  | 3.8   | 15.59% |
|             | CF  | 24  | 18.89 | 4.71  | 18.19% |
|             | МСВ | 45  | 21.49 | 17.28 | 17.13% |
| DW          | EG  | 23  | 8.14  | 5.86  | 3.91%  |
|             | MDF | 227 | 7.88  | 13.83 | 8.25%  |
|             | DD  | 101 | 3.46  | 4.06  | 7.42%  |
|             | CF  | 24  | 11.23 | 17.85 | 10.82% |
|             | МСВ | 45  | 10.69 | 18.03 | 8.52%  |
| Standing DW | EG  | 23  | 5.33  | 4.94  | 2.56%  |
|             | MDF | 227 | 5.21  | 12.38 | 5.45%  |
|             | DD  | 101 | 2.04  | 3.28  | 4.37%  |
|             | CF  | 24  | 9.91  | 17.98 | 9.54%  |
|             | МСВ | 45  | 8.48  | 18.12 | 6.76%  |
| Stump       | EG  | 23  | 0.44  | 0.65  | 0.21%  |
|             | MDF | 227 | 0.19  | 0.33  | 0.20%  |
|             | DD  | 101 | 0.35  | 0.39  | 0.75%  |
|             | CF  | 24  | 0.17  | 0.38  | 0.16%  |
|             | MCB | 45  | 0.36  | 0.46  | 0.29%  |
| Lying DW    | EG  | 23  | 2.38  | 2.73  | 1.14%  |
|             | MDF | 227 | 2.47  | 4.31  | 2.58%  |
|             | DD  | 101 | 1.07  | 1.49  | 2.29%  |
|             | CF  | 24  | 1.14  | 1.26  | 1.10%  |
|             | МСВ | 45  | 1.85  | 1.7   | 1.47%  |

The AGB pool represented about 70 - 74% of the total carbon stock for each forest class. This was almost entirely from living trees, in fact, saplings, bamboo and NTV constituted an insignificant part of the overall AGB component, often contributing to less than 1% of the total carbon stock of each forest class.

The BGB pool ranges between 18 - 27% of the total carbon stock for each forest class. This is a significant carbon pool.

DW, on the other hand, comprised less than 10% of the total stock in all but the CF forests. Of the DW pool, standing dead trees were the largest contributors and if DW is to be considered for inclusion in future NFIs, then the DW pool should focus on this sub-DW pool.

#### **DBH** Distribution

Stand tables for each of the five forest class across all provinces are summarized below. The tables show a largely uniform pattern across the forest classes. The distribution is a normal and expected distribution for secondary and disturbed forests, having a large population of smaller individuals in the 10-50cm DBH range, tapering off as individual trees of larger DBH become scarcer and harder to locate.





#### Figure 7: DBH (cm) distribution by forest class

Such DBH distributions can be explained in a number of ways depending on forest class, locality and influence/role of human populations on the landscape. Normal distribution curves generally shifted to the left are often indicative of selective logging, forest fire and subsequent secondary regrowth which can be hampered from full-scale recovery by the presence of more aggressive bamboo species.

#### Non Tree Vegetation (NTV)

NTV were measured in each sub-plot by establishing a small plot (50cm\*50cm). All vegetation, except for the living trees, saplings and bamboos were taken and measured for weight. Samples were brought back to the laboratory to measure the dry-wet ratio.

| Forest class | Sample size | C stock (tC/ha) |
|--------------|-------------|-----------------|
| EG           | 78          | 1.12            |
| MD           | 358         | 1.09            |
| DD           | 84          | 0.50            |
| CF           | 133         | 0.75            |
| МСВ          | 764         | 0.57            |

Table 9: Average carbon stock of non-timber vegetation (NTV) by forest class

#### Non Timber Forest Products (NTFPs)

NTFPs were found in 75% of all sampled plots. Some form of NTFP was found in all EG plots, while a majority of MCB and MD plots also featured some form of NTFP (78% and

88% respectively). NTFPs were only present in 42% and 46% of CF and DD respectively. Edible plants were the most common NTFP, followed by medicinal plants, fibers, ornamentals, animals or animal products, and extracts.

| Forest | Edible | Medicinal | Fibers | Extracts | Ornamentals | Animal   | Total |
|--------|--------|-----------|--------|----------|-------------|----------|-------|
| Туре   | plants | plants    |        |          |             | products |       |
| EG     | 91%    | 52%       | 35%    | 0%       | 0%          | 0%       | 100%  |
| MD     | 83%    | 52%       | 45%    | 4%       | 26%         | 27%      | 88%   |
| DD     | 46%    | 15%       | 8%     | 0%       | 3%          | 0%       | 46%   |
| CF     | 38%    | 8%        | 4%     | 4%       | 17%         | 8%       | 42%   |
| MCB    | 62%    | 40%       | 16%    | 0%       | 20%         | 13%      | 78%   |
| Total  | 70%    | 39%       | 30%    | 3%       | 18%         | 16%      | 75%   |

Table 10: Occurrence of NTFPs in plots as percentage of total number of plots.



Figure 8. Percentage occurrence by type of NTFP per forest type

While EG contained NTFPs in all of its surveyed plots, the breadth of NTFPs found was limited to only edible plants, medicinal plants and fibers. This is on contrast to MD and CF where all six types of NTFPs surveyed were found. In MCB plots all NTFPs but extracts were found, while in DD extracts as well as ornamentals were missing.

## 5.2 ER-Program Provinces

Lao PDR is engaged in the Carbon Fund's Emissions Reduction Program (ER Program) covering Northern six provinces: Houaphanh, Bokeo, Louangnamtha, Louangphabang, Oudomxai and Xaignabouly. As such, the NFI was designed to attempt to collect data from a sufficient number of plots from within these six provinces so that carbon stock

inferences from only these six provinces could be made. Analyzed and presented below are the results for carbon stocks by forest class and carbon pools for these six provinces.

#### Forest Classes

Table 11 below shows the corresponding carbon stocks in the represented forest classes from these six provinces. These results are shown for all three carbon pools (AGB, BGB and DW) as well as for only the AGB and BGB pools.

Overall sampling within the EG and DD forest types was very low within the six provinces, despite initial planning attempts to identify sufficient plots to meet minimum survey requirements. Only four EG plots and ten DD plots were found in the field. This resulted in high standard error values for these two forest types when calculating carbon stocks and, subsequently, the survey did not meet the maximum uncertainty threshold of 20 at either the 90% or 95% CI.

As compared to national averages, EG and MD within the ER-Program area show lower carbon stocks: 158.40 tC/ha as compared to 208.17 tC/ha for EG, and 92.07 tC/ha as compared to 95.56 tC/ha for MD. DD, on the other hand, shows higher carbon stocks: 64.07 tC/ha as compared to 46.64 tC/ha. Because MD comprises the vast majority of forest across the country and the differences is effectively non-significant; this is good news in terms of using MD as a viable carbon strata at both national and sub-national/ER-Program levels. However, both the EG and DD forest classes are both under sampled within the ER-Program area, correspond with a high degree of uncertainty and differ significantly as compared to national figures.

| Forest Type               | Ν      | Carbon<br>(tC/ha) | S.D.  | S.E.  | CI<br>(95%) | Uncertainty<br>(95%) |  |  |
|---------------------------|--------|-------------------|-------|-------|-------------|----------------------|--|--|
| Including AGB, BGB and DW |        |                   |       |       |             |                      |  |  |
| EG                        | 4      | 158.40            | 61.07 | 30.53 | 59.85       | 37.78                |  |  |
| MD                        | 100    | 92.07             | 33.44 | 3.34  | 6.55        | 7.12                 |  |  |
| DD                        | 10     | 64.07             | 35.29 | 11.16 | 21.87       | 34.13                |  |  |
| Including only            | AGB ar | nd BGB            |       |       |             |                      |  |  |
| EG                        | 4      | 151.08            | 57.96 | 28.98 | 56.80       | 37.60                |  |  |
| MDF                       | 100    | 86.32             | 31.26 | 3.13  | 6.13        | 7.10                 |  |  |
| DD                        | 10     | 62.71             | 35.96 | 11.37 | 22.29       | 35.54                |  |  |

| Table 11: Carbon stocks b | y forest type withi | n the 6 provinces of | the ER-Program area |
|---------------------------|---------------------|----------------------|---------------------|
|                           | / /                 |                      |                     |

#### Carbon Pools

Table 12 below breaks down each carbon pool by forest class. These results should be considered in light of both the EG and DD forest types not meeting the minimum uncertainty thresholds.

As with the national level, AGB was by far the largest pool across all forest classes ranging from 69% to 75% of total carbon. BGB was the next largest and represented between 23% and 27% of total carbon stocks. Again, as with the national level, the DW pool was the smallest pool and in all forest classes represented less than 10% of total carbon in each forest type.

| Carbon pool | Forest class | Ν   | Carbon stock<br>(tC/ha) | S.D.<br>(tC/ha) | % of forest class |
|-------------|--------------|-----|-------------------------|-----------------|-------------------|
| AGB         | EG           | 4   | 122.20                  | 46.42           | 77.14%            |
|             | MDF          | 100 | 71.01                   | 24.97           | 77.13%            |
|             | DD           | 10  | 51.72                   | 28.57           | 80.71%            |
| BGB         | EG           | 4   | 28.88                   | 11.54           | 18.24%            |
|             | MDF          | 100 | 15.31                   | 6.45            | 16.63%            |
|             | DD           | 10  | 11.00                   | 7.40            | 17.16%            |
| DW          | EG           | 4   | 7.32                    | 4.35            | 4.62%             |
|             | MDF          | 100 | 5.75                    | 12.26           | 6.25%             |

#### Table 12: ER-P-Province-wide carbon stock by carbon pool and forest class

## 5.3 Quality Control (QC)

Random re-sampling of plots was conducted in the field on a total of 58 plots in 10 Provinces. The QC team managed to re-survey 57 plots. This being said, even with the exact surveyed GPS coordinates loaded in their tablet, the QC team encountered difficulties finding the metal poles set by the initial field teams to represent the center of the sub-plot. This was particularly the case in Khammouane, Oudomxai and Louangnamtha provinces. The metal detector provided to the QC team proved to be ineffective at locating the metal pole. Furthermore, in some cases, despite being able to locate the samplings at the center of the plot (these were marked with spray paint) the QC team was unable to location the metal pole.

These difficulties could also be seen comparing the GPS coordinates collected for each plot by both the field team and QC team, as well as the recollection of the QC Team leader. Consequently, where GPS coordinates for any sub-plots differed between the field team and QC team by more than 20m, then the entire plot was excluded from the

QC analysis. Similarly, if GPS sub-plot locations differed by more than 15m and the QC Team Leader remembered having difficulties locating the center of a sub-plot plot at that location, then this plot was also excluded. Otherwise, the quality control would represent a quality control of the forest class and not the plot itself. In doing so, 22 plots were excluded, leaving 35 valid plots to conduct the comparison analysis. This, therefore represents a check on 8% of the total plots surveyed (35/420).

Non-parametric multiple comparison significance tests were carried out to determine if the measurements between the quality control sampling and the normal sampling on 2 levels. T-tests were not considered suitable in this case due to the lack of normal distribution of the data. We first tested the means of each quality control plot with the corresponding plot of the normal sampling (Appendix 1), and secondly compared the means of each forest type between the quality control and normal sampling (Table 13). P values of less than 0.05 indicate that there was a statistically significant difference in sampling time 1 (normal sampling) as compared to sampling time 2 (quality control sampling) across the entire forest type. P values greater than 0.05 indicate that there is no significant difference between the normal and the resampled QC measurements of each forest type.

As shown in Table 13 below, P-values for all forest types were greater than 0.05, indicating that there is no significant statistical difference between the carbon stocks as determined by the quality control vs. normal sampling of the same selection of plots.

|                 |    | QC sampling                |       |       |             | Normal Sampling            |       |       |             |            |
|-----------------|----|----------------------------|-------|-------|-------------|----------------------------|-------|-------|-------------|------------|
| Forest<br>class | N  | Carbon<br>stock<br>(tC/ha) | S.D.  | S.E.  | CI<br>(95%) | Carbon<br>stock<br>(tC/ha) | S.D.  | S.E.  | CI<br>(95%) | p<br>value |
| EG              | 2  | 127.33                     | 34.91 | 20.15 | 39.50       | 166.82                     | 14.34 | 8.28  | 16.23       | 0.94       |
| MDF             | 18 | 77.19                      | 33.67 | 7.94  | 15.56       | 79.57                      | 33.89 | 7.99  | 15.65       | 1.00       |
| DD              | 11 | 48.64                      | 10.34 | 3.12  | 6.11        | 44.00                      | 10.34 | 3.12  | 6.11        | 0.99       |
| CF              | 1  | 99.93                      | -     | -     | -           | 57.61                      | -     | -     | -           | -          |
| MCB             | 3  | 56.15                      | 51.29 | 29.61 | 58.04       | 53.56                      | 40.32 | 23.28 | 45.62       | 1          |

Table 13: Comparison of carbon stocks by forest class between the QC sampling plots and respective the normal field sampling plots, including the results of the test for significant differences

It should be noted that only 8% of plots were resampled, rather than the target of 10%, giving a less robust QC check. While none of the P-values indicate a significant difference in QC vs normal sampling, the count of plots only represents 8% of plots overall and in the case of CF, EG and MCB only represent 1 to 3 QC plots each, not

enough to robustly control at forest class level. This being said, individual CI at 90% and 95% for individual forest classes are below target thresholds (see Table 13) and should be considered reliable in the absence of a more rigorous QC result.

## 6. Recommendations

The following recommendations are provided for consideration in the design and implementation of Lao PDR's third NFI.

## 6.1 NFI Design

The overall design of the NFI proved to be appropriate for the task of determining carbon stocks nationally across Lao PDR.

## Number of Sub-Plots

The 2<sup>nd</sup> NFI included 4 sub-plots for each cluster. The field teams assessed the forest class for each sub-plot and this was considered in the determination of the dominant forest class for the plot. It was found, however, that a large number of plots became unusable when there was a split classification of forest classes for a plot (i.e. two sub-plots being identified as one forest class and the other two sub-plots identified as another forest class). Due to the decision to include an even number of sub-plots in the design this "split decision" issue arose.

To avoid this situation in the next iteration of the NFI it is worth considering changing the number of sub-plots to an odd number. For example, 5 sub-plots could be considered for each plot (in which case the overall radius of the plot would need to increase to 400m to accommodate the additional sub-plot).

## Carbon Pools

As no national inventory focused on carbon stocks had been conducted prior to the 2<sup>nd</sup> NFI, three carbon pools, namely AGB, BGB and DW were considered. However, as the Results section demonstrates, the only significant carbon pools were AGB and BGB; the DW pool represents less than 10% of overall carbon stocks. Within the AGB pool, the focus should be kept entirely on living trees as the other pools within this larger pool were determined to be minor contributors (i.e. bamboo, saplings, NTV).

With DW representing less than 10% of total carbon stocks, it can be ignored in future iterations of the NFI. However, if the choice is made to include the DW pool, then the data collection should focus on standing deadwood as this represented the largest pool within the overall DW pool.

It is also noted that the data collected on stumps was used in a separate analysis to determine biomass loss and emissions from logging. In the case that this method to estimate emissions from logging is considered robust and significant, then data collection on stumps may be required in future iterations of the NFI.

#### Data Measurements and SOP

Based on the two recommendations above, some changes to the SOP and field data to be collected will need to be made. Based on the recommendation to include only AGB and BGB (and potentially a subset of the DW pool) in the next iteration of the NFI, the amount of field based data to collect will be diminished. It will no longer be necessary to collect data on saplings, bamboo, NTV or lying deadwood. No longer needing to destructively sample bamboo culms will greatly reduce the time required to sample each plot, as this proved to be the most laborious and time intensive portion of the field data collection protocol. This was particularly an issue in the MD class, which was the dominant forest class.

If the next iteration of the NFI will consider a greater number of sub-plots, then the SOP will also need to be updated to take into account this additional sub-plot.

Finally, with regards to data collection, for the purposes of supporting the quality assurance process, it is recommended that the SOP be amended to require that Team Leaders take a picture of any tree larger than 100 cm DBH. Considering the large impact these larger DBH trees have on the carbon stock of a plot, it is worth including an additional quality assurance step that confirms the presence of this large tree instead of being the result of a data entry error (for e.g. entering 103 cm instead of the actual tree DBH of 10.3 cm).

## 6.2 Plot Identification Plots per Forest Class

Whether due to the inaccuracies of the satellite image classification or inconsistencies with the field teams' classification of forest classes, there was low congruence between the predicted and actual classification of forest classes for the NFI plots. This resulted in lower than desired samples for non-MD forest classes. Most notably, the 30-plot target for CF and EG was not reached at the national level. Also, the QC inventory resulted in only one CF plot, two EG plots and three MCB plots. The inventory of ER-Program province plots also resulted in a low sample size, especially for EG. As such, for the future iteration of the NFI, unless there is much greater confidence in the satellite image based classification, it is recommended to greatly increase the number of non-MD plots - knowing that once in field a large number of these will end up being MD – to ensure minimum thresholds are met for all forest classes.

#### Pre-Screening of Plots for Difficult to Access Areas

The field teams mentioned that on several occasions the selected plots were in either restricted or difficult to access areas. Examples of restricted areas included military zones, concessions, border areas (for e.g. in southern Champasak Province) or sensitive areas (for e.g. areas of Saysomboun Province). While the field seasons were designed to accommodate a certain number of missed plots, greater efforts should be taken to verify whether plots fall in areas that are likely to be considered "off-limits". For the current NFI, the team was limited by the lack of accurate shapefiles identifying concession boundaries and military zones. If available for the next iteration of the NFI, these should be used to confirm whether some plots should be re-selected. Similarly, a review of the pre-selected plots with the provincial staff that come for the training (see below) can also be a chance to confirm whether some areas may be "off-limits" due to sensitivities.

Steep slopes were also mentioned as a factor making both access and measurement of plots difficult. For the current NFI, a slope constraint of 35 degree was included when selecting plots; no plots on slopes steeper than this were selected. However, for the next iteration of the NFI, it might be prudent to further constrain this to 30 degree, particularly in the interest of safety.

## Training

Overall, the Team Leaders and field teams felt the training was largely sufficient to feel comfortable with the SOP and knowledgeable on how to use the various equipment provided to conduct the NFI. However, Team Leaders did express a desire for more field based training than what was provided before beginning the actual inventory process. This is so that field teams can learn how to deal with field based realities that are hard to capture in a SOP. Learning how to troubleshoot these scenarios before beginning the actual inventory was considered important for the next NFI.

Team Leaders also requested that additional time be spent learning how to both conduct the data inputting in the tablets and how to troubleshoot tablet issues. This can be achieved through both additional classroom training as well as the extended field training where Team Leaders will be actively using the tablets to enter field data. FIPD staff have only had limited formal training in the identification of forest classes. While the training included a session on forest class identification, Team Leaders would benefit from additional training to ensure that each Team Leader, when in the field, is classifying forest classes in standardized manner. This will help to ensure that minimum accuracies are achieved more quickly when collecting field data.

## 6.3 Field Implementation <u>Field Teams</u>

Team Leaders assessed the team composition as being mostly sufficient to complete all the field based inventory tasks. However, a challenge they encountered was the need to field-train the accompanying provincial and district staff once in the field, as it was only those who were properly trained on the SOP who could effectively help. As such, it is recommended to invite an identified PAFO staff member from each province to join the NFI training in Vientiane to ensure they have a common understanding of the SOP and the field protocols. In this way, their assistance will be of even greater value and the teams do not have to spend time training these staff themselves when in the field. If not possible to invite the provincial staff to Vientiane for the training, then an additional national staff should be made available to support the teams. As such, the role of the district staff is mostly to facilitate access and coordinate with villagers, and would be a less active member of the field based measurements.

In addition to the above, the QC team requires that all efforts be made to ensure that the same district staff and villagers that accompanied the main teams, be the people to accompany the QC team when conducting the re-measurements. This greatly facilitates the difficult task of locating the exact location of the plot as these people are generally able to remember the path and approach to the plot.

## Field Safety

Implementation of the 2nd NFI unfortunately resulted in one serious incident. One field team member was gravely injured when a farmer's truck flipped over on a steep road and landed on the member's chest. The member needed to be evacuated urgently, underwent several surgeries, and only after an extended time in hospital was able to, fortunately, make a full recovery.

This incident heightened the need for even greater field safety protocols and training in the future. Specific recommendations for this include:

Risk assessment training. Team Leader's should be given a specific field risk assessment and safety training. Staff need to be able to properly assess various risks and make an informed decision as to whether proceeding will put their teams in jeopardy. This should include topics such as terrain and navigation, vehicle use and operation, atmospheric conditions, and UXOs, among others.

First aid training. Besides being provided with a first-aid kit, there was no formal first aid response training for the teams. This should be considered mandatory and provided to all staff conducting future NFIs. This should be complemented by first aid SOPs, to be included in the first aid kit, on how to respond to different emergency and nonemergency medical situations.

Enforced rest days. To complete the NFI field season quickly, NFI teams often neglected the need for rest days. An enforced rest day, for example after every 5 days of conducting field measurements, could be considered as a way to ensure field teams remain healthy and alert. Enforced rest on monthly religious days (Buddha days) can also be considered as an alternative or in addition to the above rest days.

#### Navigation to Plots

The field teams greatly appreciated the availability of both the GPS units and tablets loaded with the maps to support navigation to the plots. Besides the often-difficult terrain to cross to reach the plots, the teams found these two pieces of technology to consistently find their way to the inventory plots. The teams only recommended two small improvements.

The first is that the tablet loaded maps include the name of rivers and mountains as this will support the field navigation. District staff and, especially villagers, are often familiar with the names of these natural features and being able to cross-reference this on the maps would help teams to orient themselves, especially when deep in the forest.

The second is for the primary field teams to provide a narrative description of how to access each plot that will act as a guide for the QC team when they return to the plot. This can be an additional data field in the data collection form that will explain the primary team's approach to the plot, such as from which village the plot was accessed, which roads and paths were taken and other features to be aware of. This, in addition to making use of the same district staff and villagers that accompanied the first inventory team, will greatly facilitate the ability of the QC team to find the plots for remeasurement.

## Tablet Use and Data Collection

All teams were greatly appreciative of the tablets, their multi-functionality and the extent to which they facilitate the data collection process. Although no tablets were damaged during the implementation of the NFI, greater attention should be placed on protecting these tablets and ensuring their continued functionality throughout the field season, considering the central role they play in the NFI. As such, for future NFIs it is recommended to purchase heavy duty, waterproof tablet cases. Additionally, while spare battery packs were provided for the current field season, the teams recommend that higher storage battery packs be provided next time for the times when the teams must spend upwards of two days in the forest to inventory a plot.

#### Quality Control

In addition to the above recommendation that a greater number of non-MD plots be preidentified when designing the QC process, there are two additional practical steps that can be implemented to improve the overall QC process.

Firstly, greater oversight should be provided by the quality assurance staff member to ensure that the QC team has met minimum sampling sizes per forest type before allowing these teams to return to Vientiane. This can be done in a similar way to what was done for the main inventory teams.

Secondly, the tablet form for the QC team should be adjusted to require this team to answer a question as to whether the QC team actually found the center of the plot and take a picture of the metal pole to confirm this.

## 7. References

- JICA(2014):Validation and Registration of the Project on REDD plus through Participatory Land and Forest Management for Avoiding Deforestation in Lao PDR(Technical Cooperation Report)
- JICA(2014):Lao PDR NFI Standard Operating Procedure (SOP) Manual for Terrestrial Carbon Measurement
- Kiyono et al(2007):Predicting chronosequential changes in carbon stocks of pachymorph bamboo communities in slash-and-burn agricultural fallow, northern Lao People's Democratic Republic

# 8. Attachment

# 8.1 Activity photos



# 8.2 Equipment list

| Equipment                              | Quantity    |
|----------------------------------------|-------------|
| Field Sampling Crew                    |             |
| Machete                                | 2           |
| First Aid Kit                          | 1           |
| Chalk sticks                           | many        |
| Durable plastic tarp ~2 m x 2 m        | 1           |
| Tablet                                 | 1           |
| Tablet charging cable/cord             | 1           |
| Internet SIM                           | 1           |
| Telephone card(50000kip)               | 1           |
| Extra battery for tablet               | 1           |
| Camera (or use Tablet)                 | 1           |
| GPS                                    | 1           |
| GPS memory                             | 1           |
| AA batteries for GPS                   | many        |
| clip board                             | 1           |
| Compass                                | 1           |
| Bright colored spray paint             | many        |
| DME distance measuring unit (grey box) | At leaset 1 |
| DME pole                               | 1           |
| DME transponder (yellow piece)         | 1           |
| AA batteries for transponder           | many        |
| 9V batter for DME grey box             | many        |
| Clinometer (slope)                     | 1           |
| Measuring Tape - 50 m                  | 2           |
| Flagging tape                          | 2           |
| Diameter tape measure                  | 2           |
| Backpack or hipsack                    | 2           |
| Pens                                   | many        |
| Pencils                                | many        |
| Pencil sharpeners                      | many        |
| Erasers                                | many        |
| small notebooks                        | 1/person    |
| NTV and bamboo                         |             |
| Small calipers                         | 1           |
| hanging scale - 500 g                  | 1           |
| hanging scale - 5 kg                   | 1           |
| Weight for caliburation(250g)          | 1           |
| Weight for caliburation(1kg)           | 1           |
|                                        | Number of   |
|                                        | plot        |
| Clip Plot (pvc)                        | 1           |

| Plot | Forest | D .          | Coordi     | nation    | AGB    |        | BGB   |       |
|------|--------|--------------|------------|-----------|--------|--------|-------|-------|
| ID   | Туре   | Province     | Х          | Y         | tB/ha  | tC/ha  | tB/ha | tC/ha |
| 1    | MCB    | Xiengkhouang | 102.86158  | 19.54622  | 162.39 | 76.32  | 38.4  | 18.05 |
| 4    | MCB    | Xiengkhouang | 103.004645 | 19.604862 | 70.22  | 33     | 13.28 | 6.24  |
| 6    | MCB    | Xiengkhouang | 103.02593  | 19.599873 | 60.25  | 28.32  | 11.62 | 5.46  |
| 7    | CF     | Xiengkhouang | 103.145601 | 19.621843 | 90.4   | 42.49  | 28.48 | 13.39 |
| 8    | EF     | Houaphanh    | 103.30237  | 20.212317 | 157.04 | 73.81  | 35.05 | 16.47 |
| 18   | MDF    | Houaphanh    | 104.357649 | 20.402886 | 47.95  | 22.53  | 4.07  | 1.91  |
| 22   | MDF    | Houaphanh    | 104.976315 | 20.088335 | 42.25  | 19.86  | 7.67  | 3.61  |
| 30   | CF     | Xekong       | 107.059537 | 15.405704 | 116.25 | 54.64  | 35.69 | 16.78 |
| 31   | CF     | Xekong       | 107.131844 | 15.786707 | 126.23 | 59.33  | 35.07 | 16.48 |
| 32   | CF     | Xekong       | 107.171301 | 15.297576 | 171.47 | 80.59  | 42.7  | 20.07 |
| 33   | MCB    | Xekong       | 107.168997 | 15.329152 | 87.35  | 41.05  | 18.36 | 8.63  |
| 34   | MDF    | Xekong       | 107.263676 | 15.358765 | 217.32 | 102.14 | 51.04 | 23.99 |
| 35   | CF     | Xekong       | 107.293143 | 15.281495 | 169.7  | 79.76  | 44.33 | 20.83 |
| 37   | CF     | Xekong       | 107.326202 | 15.265665 | 53     | 24.91  | 17.17 | 8.07  |
| 40   | CF     | Xekong       | 107.533807 | 15.275099 | 219.06 | 102.96 | 49.72 | 23.37 |
| 41   | CF     | Xekong       | 107.528225 | 15.293464 | 214.66 | 100.89 | 48.2  | 22.65 |
| 44   | CF     | Xekong       | 107.562756 | 15.246793 | 225.19 | 105.84 | 51.17 | 24.05 |
| 45   | CF     | Xekong       | 107.553581 | 15.262137 | 165.07 | 77.58  | 42.53 | 19.99 |
| 46   | CF     | Xekong       | 107.556271 | 15.284201 | 156.04 | 73.34  | 39.39 | 18.51 |
| 47   | CF     | Xekong       | 107.567383 | 15.180835 | 215.15 | 101.12 | 48.71 | 22.89 |
| 48   | MCB    | Xekong       | 107.575978 | 15.289522 | 143.1  | 67.26  | 33.09 | 15.55 |
| 50   | MDF    | Xekong       | 107.606253 | 15.321665 | 185.05 | 86.98  | 41.38 | 19.45 |
| 59   | MDF    | Xekong       | 106.630043 | 15.481175 | 148.74 | 69.91  | 32.19 | 15.13 |
| 75   | MCB    | Khammouane   | 105.231763 | 17.911057 | 303.15 | 142.48 | 72.31 | 33.98 |
| 81   | MDF    | Khammouane   | 105.765902 | 17.615302 | 182.28 | 85.67  | 43.14 | 20.28 |
| 85   | MDF    | Khammouane   | 105.902624 | 17.085786 | 307.52 | 144.54 | 73.25 | 34.43 |
| 112  | MDF    | Xiengkhouang | 104.036501 | 18.887641 | 118.8  | 55.84  | 26.6  | 12.5  |
| 121  | MDF    | Xiengkhouang | 102.824663 | 19.561147 | 200.98 | 94.46  | 46.13 | 21.68 |
| 124  | MDF    | Xiengkhouang | 102.88733  | 19.592515 | 146.59 | 68.9   | 32.95 | 15.49 |
| 125  | MDF    | Xiengkhouang | 102.899625 | 19.660923 | 132.59 | 62.32  | 29.85 | 14.03 |
| 126  | MDF    | Xiengkhouang | 102.928983 | 19.524534 | 100.28 | 47.13  | 21.12 | 9.93  |
| 127  | MCB    | Xiengkhouang | 102.944905 | 19.585697 | 127.32 | 59.84  | 29.17 | 13.71 |
| 129  | MDF    | Xiengkhouang | 102.982996 | 19.625935 | 97.01  | 45.59  | 20.84 | 9.8   |
| 130  | MDF    | Xiengkhouang | 103.010271 | 19.533423 | 113.65 | 53.41  | 26.08 | 12.26 |
| 131  | MDF    | Xiengkhouang | 103.047633 | 19.563296 | 91.27  | 42.9   | 19.17 | 9.01  |
| 132  | MDF    | Xiengkhouang | 103.085553 | 19.5805   | 76.68  | 36.04  | 16.07 | 7.55  |
| 133  | MDF    | Xiengkhouang | 103.151735 | 19.563781 | 82.83  | 38.93  | 16.11 | 7.57  |
| 134  | MDF    | Xiengkhouang | 103.157109 | 19.585729 | 165.94 | 77.99  | 35.57 | 16.72 |
| 138  | MDF    | Xiengkhouang | NA         | NA        | 73.4   | 34.5   | 14.5  | 6.81  |
| 141  | MDF    | Houaphanh    | 103.691826 | 20.365434 | 101.06 | 47.5   | 16.24 | 7.63  |
| 149  | MDF    | Houaphanh    | 104.836084 | 20.029768 | 102.4  | 48.13  | 19.73 | 9.27  |

# 8.3 Survey Plot Information

| 150 | EF  | Khammouane | 104.877342 | 17.983054 | 379.67 | 178.45 | 90.68  | 42.62 |
|-----|-----|------------|------------|-----------|--------|--------|--------|-------|
| 151 | MDF | Khammouane | 104.903191 | 17.870948 | 159.89 | 75.15  | 36.69  | 17.25 |
| 152 | EF  | Khammouane | 104.88981  | 17.983508 | 285.43 | 134.15 | 68.1   | 32    |
| 154 | EF  | Khammouane | 104.910074 | 17.951765 | 356.56 | 167.58 | 84.95  | 39.93 |
| 156 | MDF | Khammouane | 104.963973 | 17.807493 | 140.17 | 65.88  | 30.96  | 14.55 |
| 157 | MDF | Khammouane | 104.941219 | 17.832798 | 309.83 | 145.62 | 33.5   | 15.74 |
| 158 | MDF | Houaphanh  | 104.955967 | 20.055737 | 79.01  | 37.14  | 14.43  | 6.78  |
| 159 | MDF | Houaphanh  | 104.956637 | 20.069965 | 81.53  | 38.32  | 15.11  | 7.1   |
| 161 | MDF | Khammouane | 105.003523 | 17.837602 | 157.57 | 74.06  | 35.68  | 16.77 |
| 163 | EF  | Khammouane | 105.085014 | 17.880278 | 182.53 | 85.79  | 42.48  | 19.97 |
| 165 | MCB | Khammouane | 105.119541 | 17.857652 | 310.8  | 146.08 | 73.85  | 34.71 |
| 167 | MDF | Khammouane | 105.176082 | 17.691201 | 131.32 | 61.72  | 29.03  | 13.64 |
| 168 | MDF | Khammouane | 105.19052  | 17.836454 | 157.9  | 74.21  | 35.36  | 16.62 |
| 169 | EF  | Khammouane | 105.204264 | 17.646003 | 474.6  | 223.06 | 113.23 | 53.22 |
| 170 | MDF | Khammouane | 105.220014 | 17.666018 | 409.12 | 192.29 | 97.6   | 45.87 |
| 171 | MDF | Khammouane | 105.223324 | 17.664973 | 283.09 | 133.05 | 67.53  | 31.74 |
| 173 | MDF | Khammouane | 105.256528 | 17.641225 | 189.03 | 88.84  | 43.82  | 20.59 |
| 175 | MDF | Khammouane | 105.3221   | 17.675219 | 242.75 | 114.09 | 57.83  | 27.18 |
| 176 | MCB | Khammouane | 105.320423 | 17.694333 | 555.55 | 261.11 | 132.95 | 62.49 |
| 179 | MCB | Khammouane | 105.337551 | 17.676272 | 376.68 | 177.04 | 89.95  | 42.28 |
| 180 | MCB | Khammouane | 105.344738 | 17.743016 | 797.2  | 374.68 | 190.97 | 89.75 |
| 183 | MCB | Khammouane | 105.407935 | 17.659994 | 414.39 | 194.76 | 99.16  | 46.61 |
| 184 | MDF | Khammouane | 105.466206 | 17.648313 | 297.42 | 139.79 | 70.6   | 33.18 |
| 185 | MDF | Khammouane | 105.470142 | 17.676218 | 177    | 83.19  | 39.78  | 18.7  |
| 186 | MDF | Khammouane | 105.453612 | 17.687139 | 164.74 | 77.43  | 37.99  | 17.85 |
| 191 | CF  | Xekong     | 107.06803  | 15.524276 | 240.91 | 113.23 | 56.24  | 26.43 |
| 194 | CF  | Xekong     | 107.086542 | 15.777687 | 239.82 | 112.72 | 54.79  | 25.75 |
| 197 | MDF | Xekong     | 107.096196 | 15.776649 | 250.15 | 117.57 | 59.3   | 27.87 |
| 200 | MDF | Xekong     | 107.172994 | 15.450349 | 154.92 | 72.81  | 33.87  | 15.92 |
| 202 | MCB | Xekong     | 107.170293 | 15.645163 | 323.81 | 152.19 | 76.59  | 36    |
| 205 | MDF | Xekong     | 107.173237 | 15.797745 | 149.48 | 70.26  | 32.65  | 15.35 |
| 206 | MDF | Xekong     | 107.177307 | 15.805447 | 139.15 | 65.4   | 31.66  | 14.88 |
| 207 | CF  | Xekong     | 107.1883   | 15.384795 | 165.84 | 77.95  | 40.81  | 19.18 |
| 208 | CF  | Xekong     | 107.18085  | 15.403843 | 156.66 | 73.63  | 37.89  | 17.81 |
| 210 | CF  | Xekong     | 107.184975 | 15.81405  | 220.38 | 103.58 | 52.01  | 24.45 |
| 211 | MDF | Xekong     | 107.230162 | 15.5985   | 289.02 | 135.84 | 68.2   | 32.06 |
| 212 | MDF | Xekong     | 107.20816  | 15.737491 | 120.32 | 56.55  | 27.36  | 12.86 |
| 213 | MDF | Xekong     | 107.2499   | 15.380986 | 192.93 | 90.67  | 44.29  | 20.82 |
| 214 | MDF | Xekong     | 107.269531 | 15.405673 | 242.23 | 113.85 | 57.39  | 26.98 |
| 215 | MCB | Xekong     | 107.277672 | 15.436179 | 60.71  | 28.53  | 11.63  | 5.47  |
| 222 | MDF | Xekong     | 107.311098 | 15.440749 | 98.95  | 46.51  | 19.9   | 9.35  |
| 223 | MDF | Xekong     | 107.299623 | 15.450793 | 158.27 | 74.39  | 34.49  | 16.21 |
| 224 | MDF | Xekong     | 107.305429 | 15.546496 | 76.67  | 36.04  | 14.84  | 6.98  |
| 225 | MDF | Xekong     | 107.333904 | 15.395353 | 143.22 | 67.31  | 32.88  | 15.45 |

| 228  | MDF | Xekong       | 107.384621 | 15.25996  | 114.53 | 53.83  | 23.68  | 11.13 |
|------|-----|--------------|------------|-----------|--------|--------|--------|-------|
| 233  | MDF | Xekong       | 107.477106 | 15.40144  | 146.72 | 68.96  | 34.07  | 16.01 |
| 237  | MDF | Xekong       | 107.511873 | 15.217384 | 201.71 | 94.8   | 44.41  | 20.87 |
| 239  | MCB | Xekong       | 107.588667 | 15.300231 | 160.55 | 75.46  | 37.01  | 17.4  |
| 240  | MDF | Xekong       | 107.594436 | 15.301672 | 165.66 | 77.86  | 38.59  | 18.14 |
| 243  | MCB | Xiengkhouang | 103.073469 | 19.348793 | 90.79  | 42.67  | 19.61  | 9.22  |
| 244  | MCB | Xiengkhouang | 103.08199  | 19.346119 | 93.61  | 44     | 20     | 9.4   |
| 245  | CF  | Xiengkhouang | 103.497458 | 19.45857  | 133.91 | 62.94  | 37.31  | 17.54 |
| 246  | MCB | Xiengkhouang | 103.527772 | 19.455092 | 94.68  | 44.5   | 18.59  | 8.74  |
| 247  | MCB | Xiengkhouang | 103.54097  | 19.462064 | 85.35  | 40.12  | 16.72  | 7.86  |
| 248  | CF  | Xiengkhouang | 103.677852 | 19.3389   | 119.23 | 56.04  | 35.19  | 16.54 |
| 249  | CF  | Xekong       | 107.077702 | 15.569196 | 168.4  | 79.15  | 47.15  | 22.16 |
| 251  | MDF | Xekong       | 107.274408 | 15.316121 | 221.24 | 103.98 | 51.21  | 24.07 |
| 252  | CF  | Xekong       | 107.317244 | 15.371531 | 141.83 | 66.66  | 38.3   | 18    |
| 253  | MDF | Xekong       | 106.614818 | 15.475413 | 158.02 | 74.27  | 31.13  | 14.63 |
| 254  | MDF | Xekong       | 106.680546 | 15.54748  | 185.57 | 87.22  | 42.76  | 20.1  |
| 255  | EF  | Khammouane   | 105.163808 | 17.911059 | 361.5  | 169.91 | 86.09  | 40.46 |
| 257  | EF  | Khammouane   | 105.227464 | 18.000654 | 212.7  | 99.97  | 50.71  | 23.83 |
| 258  | EF  | Khammouane   | 105.300039 | 17.954555 | 455.45 | 214.06 | 108.86 | 51.16 |
| 260  | MDF | Houaphanh    | 103.2382   | 20.185431 | 109.27 | 51.36  | 23.81  | 11.19 |
| 261  | MDF | Houaphanh    | 103.258916 | 20.21488  | 148.58 | 69.83  | 23.88  | 11.23 |
| 262  | MDF | Houaphanh    | 103.821754 | 20.374    | 54.86  | 25.78  | 10.32  | 4.85  |
| 265  | EF  | Xekong       | 107.194865 | 15.685005 | 468.82 | 220.35 | 112.07 | 52.67 |
| 266  | MCB | Xekong       | 107.219195 | 15.631434 | 199.2  | 93.62  | 45.04  | 21.17 |
| 267  | MCB | Xekong       | 107.230406 | 15.638338 | 328.88 | 154.58 | 77.49  | 36.42 |
| 269  | MCB | Xekong       | 107.250015 | 15.638508 | 349.05 | 164.06 | 82.26  | 38.66 |
| 270  | MDF | Xekong       | 107.262288 | 15.369821 | 214.12 | 100.64 | 49.81  | 23.41 |
| 271  | MDF | Xekong       | 107.269713 | 15.494192 | 163.92 | 77.04  | 37.5   | 17.62 |
| 272  | MDF | Xekong       | 107.294527 | 15.507252 | 154.64 | 72.68  | 34.66  | 16.29 |
| 273  | MDF | Xekong       | 107.375753 | 15.424759 | 187.1  | 87.94  | 42.65  | 20.04 |
| 274  | MDF | Xekong       | 107.417512 | 15.383131 | 139.63 | 65.63  | 23.72  | 11.15 |
| 279  | MDF | Xiengkhouang | 103.066105 | 19.538434 | 88.89  | 41.78  | 17.54  | 8.24  |
| 280  | MCB | Xiengkhouang | 103.153548 | 19.62326  | 119.46 | 56.14  | 25.24  | 11.86 |
| 281  | CF  | Xiengkhouang | 102.923484 | 19.579447 | 71.66  | 33.68  | 24.03  | 11.3  |
| 282  | MCB | Xiengkhouang | 103.060836 | 19.5754   | 72.04  | 33.86  | 14     | 6.58  |
| 283  | MCB | Xiengkhouang | 103.142366 | 19.533213 | 62.62  | 29.43  | 12.24  | 5.75  |
| 284  | MDF | Xiengkhouang | 103.151075 | 19.586632 | 118.11 | 55.51  | 26.58  | 12.49 |
| 289  | MCB | Khammouane   | 105.300546 | 17.637771 | 281.23 | 132.18 | 66.87  | 31.43 |
| 290  | MCB | Khammouane   | 105.330111 | 17.619282 | 374.51 | 176.02 | 89.34  | 41.99 |
| 1016 | DD  | Khammouane   | 104.886137 | 17.277617 | 98.02  | 46.07  | 20.9   | 9.82  |
| 1018 | DD  | Khammouane   | 105.10552  | 17.185933 | 84.48  | 39.7   | 16.64  | 7.82  |
| 1019 | DD  | Khammouane   | 104.962052 | 17.166338 | 48.13  | 22.62  | 9.4    | 4.42  |
| 1020 | DD  | Khammouane   | 105.079041 | 17.096986 | 90.8   | 42.68  | 18.94  | 8.9   |
| 1022 | DD  | Savannakhet  | 105.187246 | 17.029228 | 99.12  | 46.59  | 21.1   | 9.92  |

| 1024 | MDF | Savannakhet | 104.800627 | 16.838619 | 63.19  | 29.7  | 12.42 | 5.84  |
|------|-----|-------------|------------|-----------|--------|-------|-------|-------|
| 1025 | DD  | Savannakhet | 105.380758 | 16.794906 | 70.55  | 33.16 | 14.89 | 7     |
| 1026 | DD  | Savannakhet | 105.442307 | 16.776112 | 76.09  | 35.76 | 14.83 | 6.97  |
| 1027 | DD  | Savannakhet | 105.5784   | 16.766879 | 50.55  | 23.76 | 9.31  | 4.38  |
| 1028 | DD  | Savannakhet | 105.262199 | 16.751928 | 54.4   | 25.57 | 10.52 | 4.94  |
| 1029 | DD  | Savannakhet | 105.365709 | 16.739138 | 40.32  | 18.95 | 7.52  | 3.54  |
| 1030 | MDF | Savannakhet | 105.160785 | 16.720831 | 63.04  | 29.63 | 12.13 | 5.7   |
| 1033 | DD  | Savannakhet | NA         | NA        | 78.56  | 36.92 | 16.21 | 7.62  |
| 1034 | MDF | Savannakhet | 104.893107 | 16.647424 | 92.2   | 43.34 | 17.59 | 8.27  |
| 1035 | DD  | Savannakhet | 105.03642  | 16.643663 | 44.3   | 20.82 | 8.47  | 3.98  |
| 1036 | MDF | Savannakhet | 104.85076  | 16.589447 | 111.4  | 52.36 | 25.26 | 11.87 |
| 1037 | DD  | Savannakhet | 105.366086 | 16.56346  | 61.55  | 28.93 | 11.71 | 5.5   |
| 1038 | DD  | Savannakhet | 105.567477 | 16.545999 | 73.68  | 34.63 | 13.87 | 6.52  |
| 1039 | DD  | Savannakhet | NA         | NA        | 67.42  | 31.69 | 12.63 | 5.93  |
| 1040 | DD  | Savannakhet | 105.883342 | 16.549293 | 47.07  | 22.12 | 8.65  | 4.07  |
| 1041 | DD  | Savannakhet | 105.383694 | 16.529345 | 78.58  | 36.93 | 16.76 | 7.88  |
| 1042 | DD  | Savannakhet | 105.849004 | 16.531053 | 49.75  | 23.38 | 9.26  | 4.35  |
| 1043 | DD  | Savannakhet | 105.908849 | 16.522572 | 76.76  | 36.08 | 14.57 | 6.85  |
| 1044 | DD  | Savannakhet | 105.387707 | 16.514013 | 81.58  | 38.34 | 16.93 | 7.96  |
| 1045 | DD  | Savannakhet | 105.951571 | 16.499726 | 55.19  | 25.94 | 10.08 | 4.74  |
| 1046 | DD  | Savannakhet | 106.090781 | 16.505579 | 81.11  | 38.12 | 15.68 | 7.37  |
| 1047 | DD  | Savannakhet | 105.793915 | 16.433142 | 110.58 | 51.97 | 22.55 | 10.6  |
| 1048 | DD  | Savannakhet | 105.899387 | 16.382925 | 99.88  | 46.94 | 21.16 | 9.95  |
| 1049 | DD  | Savannakhet | 105.86416  | 16.363666 | 61.76  | 29.03 | 11.47 | 5.39  |
| 1050 | DD  | Savannakhet | 105.480772 | 16.337466 | 141.2  | 66.37 | 32.97 | 15.5  |
| 1051 | DD  | Savannakhet | 105.531422 | 16.32794  | 86.02  | 40.43 | 16.51 | 7.76  |
| 1053 | DD  | Savannakhet | 106.192825 | 16.308423 | 80.01  | 37.61 | 15.27 | 7.18  |
| 1054 | DD  | Savannakhet | 105.017947 | 16.294039 | 105.12 | 49.41 | 21.64 | 10.17 |
| 1055 | DD  | Savannakhet | 105.772922 | 16.274888 | 72.84  | 34.23 | 13.82 | 6.5   |
| 1056 | DD  | Savannakhet | 105.824091 | 16.295832 | 87.83  | 41.28 | 18.44 | 8.66  |
| 1057 | DD  | Savannakhet | 105.66104  | 16.250538 | 45.42  | 21.35 | 8.37  | 3.93  |
| 1058 | DD  | Savannakhet | 105.828533 | 16.25956  | 87.01  | 40.89 | 16.96 | 7.97  |
| 1059 | DD  | Savannakhet | 105.747569 | 16.250517 | 126.71 | 59.55 | 29.04 | 13.65 |
| 1060 | DD  | Savannakhet | 105.771204 | 16.242666 | 55.42  | 26.05 | 10.59 | 4.98  |
| 1061 | DD  | Savannakhet | 105.966364 | 16.231927 | 55.65  | 26.16 | 10.78 | 5.07  |
| 1062 | DD  | Savannakhet | 105.917729 | 16.206057 | 75.31  | 35.4  | 16.13 | 7.58  |
| 1063 | DD  | Savannakhet | 105.465043 | 16.177195 | 97.77  | 45.95 | 21.67 | 10.18 |
| 1064 | MDF | Savannakhet | 105.823007 | 16.163619 | 136.37 | 64.1  | 29.34 | 13.79 |
| 1065 | DD  | Savannakhet | 105.429921 | 16.143298 | 63.42  | 29.81 | 11.97 | 5.63  |
| 1066 | DD  | Savannakhet | 105.48314  | 16.161195 | 78.4   | 36.85 | 14.98 | 7.04  |
| 1068 | DD  | Salavan     | 106.252344 | 16.05181  | 101.61 | 47.76 | 19.76 | 9.29  |
| 1069 | DD  | Savannakhet | 105.917701 | 16.017968 | 92.43  | 43.44 | 18.04 | 8.48  |
| 1070 | DD  | Savannakhet | 105.836041 | 15.9977   | 104.63 | 49.18 | 23.26 | 10.93 |
| 1071 | DD  | Salavan     | 105.462886 | 15.951427 | 91.96  | 43.22 | 17.74 | 8.34  |

| 1072 | DD  | Salavan     | 106.42269  | 15.950304 | 74.97  | 35.23 | 14.36 | 6.75  |
|------|-----|-------------|------------|-----------|--------|-------|-------|-------|
| 1073 | DD  | Salavan     | 105.56529  | 15.924968 | 28.55  | 13.42 | 5.15  | 2.42  |
| 1074 | DD  | Salavan     | 105.990572 | 15.931162 | 47.24  | 22.2  | 8.92  | 4.19  |
| 1075 | DD  | Salavan     | 106.281827 | 15.803093 | 82.47  | 38.76 | 15.76 | 7.41  |
| 1076 | DD  | Salavan     | 106.497648 | 15.727624 | 108.15 | 50.83 | 24.82 | 11.67 |
| 1077 | DD  | Salavan     | 106.224042 | 15.670159 | 107.77 | 50.65 | 23.41 | 11    |
| 1078 | DD  | Salavan     | 106.437978 | 15.693031 | 46.54  | 21.87 | 8.61  | 4.05  |
| 1079 | DD  | Salavan     | 106.510302 | 15.686945 | 46.58  | 21.89 | 8.67  | 4.08  |
| 1080 | DD  | Salavan     | 105.79401  | 15.646131 | 53.29  | 25.04 | 9.93  | 4.67  |
| 1081 | DD  | Salavan     | 106.434184 | 15.668522 | 58.24  | 27.37 | 11.25 | 5.29  |
| 1082 | DD  | Salavan     | 106.46982  | 15.665401 | 73.48  | 34.54 | 15.43 | 7.25  |
| 1083 | DD  | Salavan     | 106.121172 | 15.620215 | 170.16 | 79.97 | 39.54 | 18.58 |
| 1084 | DD  | Salavan     | 106.160132 | 15.598421 | 123.31 | 57.95 | 27.03 | 12.7  |
| 1085 | DD  | Salavan     | 106.603092 | 15.573755 | 90.33  | 42.46 | 19.71 | 9.27  |
| 1089 | DD  | Xekong      | 106.733295 | 15.454282 | 68.72  | 32.3  | 13.53 | 6.36  |
| 1090 | MDF | Xekong      | 106.890392 | 15.344593 | 67.84  | 31.89 | 13.19 | 6.2   |
| 1092 | DD  | Xekong      | 106.77997  | 15.256799 | 106.81 | 50.2  | 22.37 | 10.51 |
| 1093 | DD  | Attapeu     | 106.783326 | 15.243    | 33.9   | 15.93 | 6.54  | 3.07  |
| 1094 | DD  | Attapeu     | 106.774824 | 15.222438 | 90.86  | 42.7  | 17.52 | 8.24  |
| 1095 | DD  | Attapeu     | 106.82749  | 15.170409 | 46.35  | 21.78 | 8.95  | 4.21  |
| 1098 | DD  | Attapeu     | 106.901822 | 15.067131 | 47.37  | 22.26 | 8.54  | 4.01  |
| 1099 | DD  | Attapeu     | 106.863443 | 14.992629 | 97.33  | 45.74 | 21.66 | 10.18 |
| 1102 | DD  | Champasak   | 105.615145 | 14.937732 | 39.83  | 18.72 | 7.16  | 3.37  |
| 1103 | DD  | Champasak   | 106.132949 | 14.929911 | 47.6   | 22.37 | 7.63  | 3.59  |
| 1106 | DD  | Attapeu     | 106.850127 | 14.901653 | 63.28  | 29.74 | 12.01 | 5.65  |
| 1109 | DD  | Champasak   | 106.126079 | 14.851103 | 83.53  | 39.26 | 18.1  | 8.51  |
| 1112 | DD  | Champasak   | 105.601525 | 14.815744 | 42.56  | 20    | 7.89  | 3.71  |
| 1113 | DD  | Champasak   | 105.645741 | 14.8285   | 44.66  | 20.99 | 8.18  | 3.84  |
| 1117 | DD  | Attapeu     | 106.350799 | 14.638119 | 65.55  | 30.81 | 12.55 | 5.9   |
| 1118 | DD  | Attapeu     | 106.426295 | 14.627253 | 59.4   | 27.92 | 11.35 | 5.33  |
| 1119 | DD  | Attapeu     | 106.405887 | 14.576591 | 47.89  | 22.51 | 8.81  | 4.14  |
| 1120 | DD  | Champasak   | 105.611726 | 14.555894 | 62.14  | 29.21 | 11.78 | 5.54  |
| 1121 | DD  | Champasak   | 105.590035 | 14.534359 | 62.21  | 29.24 | 11.81 | 5.55  |
| 1122 | DD  | Champasak   | 105.772004 | 14.518449 | 49.5   | 23.27 | 9.14  | 4.29  |
| 1123 | DD  | Champasak   | 105.605327 | 14.504341 | 55.94  | 26.29 | 10.55 | 4.96  |
| 1124 | DD  | Champasak   | 105.7069   | 14.486924 | 80.26  | 37.72 | 15.37 | 7.23  |
| 1125 | DD  | Champasak   | 105.896331 | 14.486383 | 54.53  | 25.63 | 10.51 | 4.94  |
| 1126 | DD  | Attapeu     | 106.38248  | 14.49525  | 115.88 | 54.46 | 25.44 | 11.96 |
| 1128 | DD  | Champasak   | 105.749947 | 14.302794 | 18.99  | 8.93  | 3.29  | 1.55  |
| 1129 | DD  | Champasak   | 105.338755 | 14.237426 | 60.21  | 28.3  | 11.35 | 5.33  |
| 1130 | DD  | Champasak   | 105.380145 | 14.223548 | 83.64  | 39.31 | 17.51 | 8.23  |
| 1131 | DD  | Champasak   | 106.000506 | 14.126098 | 99.58  | 46.8  | 20.9  | 9.82  |
| 1132 | DD  | Champasak   | 106.03795  | 14.080803 | 38.9   | 18.29 | 7.41  | 3.48  |
| 1133 | MDF | Xaignabouly | 101.483254 | 19.609111 | 167.23 | 78.6  | 39.09 | 18.37 |

| 1134 | MDF | Xaignabouly  | 100.547147 | 19.591166 | 164.63 | 77.38  | 37.62  | 17.68 |
|------|-----|--------------|------------|-----------|--------|--------|--------|-------|
| 1136 | MDF | Xaignabouly  | 101.427288 | 19.281388 | 163.49 | 76.84  | 37.73  | 17.73 |
| 1138 | EF  | Xiengkhouang | 104.031949 | 19.203737 | 621.64 | 292.17 | 148.64 | 69.86 |
| 1139 | MDF | Vientiane    | 102.015545 | 19.112891 | 156.75 | 73.67  | 35.98  | 16.91 |
| 1140 | MDF | Xaignabouly  | 101.735412 | 18.973929 | 96.64  | 45.42  | 20.31  | 9.55  |
| 1141 | MDF | Xaisomboun   | 102.795633 | 18.990984 | 86.64  | 40.72  | 16.38  | 7.7   |
| 1143 | MDF | Xiengkhouang | 104.207391 | 19.006559 | 170.64 | 80.2   | 38.43  | 18.06 |
| 1145 | MDF | Vientiane    | 102.596778 | 18.924405 | 150.98 | 70.96  | 22.15  | 10.41 |
| 1146 | MDF | Xaignabouly  | 101.33624  | 18.881851 | 160.59 | 75.48  | 35.03  | 16.46 |
| 1147 | MDF | Vientiane    | 102.067945 | 18.900458 | 220.76 | 103.76 | 35.29  | 16.58 |
| 1149 | MDF | Xaisomboun   | 102.807294 | 18.862251 | 108.15 | 50.83  | 20.01  | 9.4   |
| 1150 | MDF | Bolikhamxay  | 103.837966 | 18.836523 | 178.64 | 83.96  | 41.51  | 19.51 |
| 1151 | DD  | Xaignabouly  | 101.425165 | 18.781267 | 253.14 | 118.98 | 59.75  | 28.08 |
| 1156 | MDF | Bolikhamxay  | 103.944222 | 18.660989 | 246.98 | 116.08 | 58.83  | 27.65 |
| 1159 | MDF | Bolikhamxay  | 104.050561 | 18.646196 | 193.47 | 90.93  | 43.06  | 20.24 |
| 1160 | EF  | Bolikhamxay  | 103.921415 | 18.549585 | 260.22 | 122.31 | 60.93  | 28.64 |
| 1161 | EF  | Bolikhamxay  | 104.770488 | 18.567517 | 355.28 | 166.98 | 84.87  | 39.89 |
| 1163 | MDF | Bolikhamxay  | 103.166801 | 18.517008 | 161.24 | 75.78  | 36.11  | 16.97 |
| 1164 | EF  | Bolikhamxay  | 103.379985 | 18.531759 | 289.54 | 136.08 | 69.12  | 32.48 |
| 1165 | EF  | Bolikhamxay  | 104.094794 | 18.459323 | 302.02 | 141.95 | 72.08  | 33.88 |
| 1166 | EF  | Bolikhamxay  | 104.208753 | 18.464275 | 439.63 | 206.63 | 105.21 | 49.45 |
| 1167 | MDF | Bolikhamxay  | 102.991901 | 18.271972 | 187.09 | 87.93  | 41.74  | 19.62 |
| 1169 | MDF | Bolikhamxay  | 104.351644 | 18.148531 | 107.37 | 50.46  | 22.56  | 10.6  |
| 1170 | EF  | Bolikhamxay  | 104.862023 | 18.114405 | 408.14 | 191.83 | 97.55  | 45.85 |
| 1171 | MDF | Bolikhamxay  | 104.978834 | 18.003651 | 195.21 | 91.75  | 46.23  | 21.73 |
| 1174 | MDF | Khammouane   | 105.228048 | 17.909333 | 306.96 | 144.27 | 72.92  | 34.27 |
| 1175 | MDF | Khammouane   | 105.324519 | 17.11139  | 191.53 | 90.02  | 42.9   | 20.16 |
| 1176 | MDF | Khammouane   | 105.327575 | 17.112805 | 254.84 | 119.78 | 60.08  | 28.24 |
| 1177 | MDF | Savannakhet  | 105.904396 | 17.035136 | 243    | 114.21 | 56.16  | 26.39 |
| 1178 | MDF | Savannakhet  | 106.096338 | 16.924257 | 191.68 | 90.09  | 43.13  | 20.27 |
| 1180 | MDF | Savannakhet  | 105.999223 | 16.602939 | 134.74 | 63.33  | 26.35  | 12.38 |
| 1181 | MDF | Savannakhet  | 106.208124 | 16.521916 | 194.65 | 91.49  | 45.31  | 21.3  |
| 1182 | MDF | Salavan      | 106.563141 | 16.133962 | 192.26 | 90.36  | 43.39  | 20.39 |
| 1183 | MDF | Savannakhet  | 105.972055 | 16.102979 | 172.74 | 81.19  | 40.51  | 19.04 |
| 1184 | MDF | Savannakhet  | 105.546765 | 16.073165 | 168.42 | 79.16  | 39.41  | 18.52 |
| 1185 | MDF | Salavan      | 105.917637 | 15.820016 | 116.11 | 54.57  | 24.29  | 11.42 |
| 1189 | MDF | Louangnamtha | 101.387997 | 21.196884 | 165.21 | 77.65  | 38.67  | 18.17 |
| 1190 | MDF | Louangnamtha | 101.473964 | 21.218247 | 157.18 | 73.88  | 36.37  | 17.1  |
| 1191 | MDF | Louangnamtha | 101.52442  | 21.205782 | 169.3  | 79.57  | 38.92  | 18.29 |
| 1192 | MDF | Louangnamtha | 101.382756 | 21.17706  | 118.91 | 55.89  | 25.96  | 12.2  |
| 1193 | MDF | Louangnamtha | 101.516063 | 21.17921  | 141.85 | 66.67  | 32.65  | 15.35 |
| 1195 | MDF | Louangnamtha | 101.601856 | 21.13319  | 143.48 | 67.44  | 33.1   | 15.56 |
| 1196 | MDF | Louangnamtha | 101.141969 | 21.10734  | 248.17 | 116.64 | 58.14  | 27.33 |
| 1197 | MDF | Oudomxai     | 101.800833 | 21.103877 | 124.37 | 58.45  | 26.42  | 12.42 |

| 1199 | MDF | Louangnamtha | 101.301684 | 21.04889  | 168.18 | 79.04  | 39.34 | 18.49 |
|------|-----|--------------|------------|-----------|--------|--------|-------|-------|
| 1200 | MDF | Oudomxai     | 101.782095 | 21.038833 | 195.64 | 91.95  | 46.6  | 21.9  |
| 1201 | MDF | Oudomxai     | 101.851678 | 21.051906 | 227.7  | 107.02 | 53.99 | 25.38 |
| 1202 | MDF | Louangnamtha | 101.565495 | 20.940487 | 179.91 | 84.56  | 42.73 | 20.08 |
| 1203 | MDF | Louangnamtha | 101.42708  | 20.805325 | 168.45 | 79.17  | 36.85 | 17.32 |
| 1204 | MDF | Louangnamtha | 101.168667 | 20.773179 | 230.65 | 108.41 | 55.04 | 25.87 |
| 1205 | MDF | Louangnamtha | 101.278562 | 20.789072 | 234.16 | 110.05 | 55.72 | 26.19 |
| 1206 | MDF | Louangnamtha | 101.27756  | 20.702904 | 201.39 | 94.65  | 46.45 | 21.83 |
| 1207 | MDF | Bokeo        | 100.641774 | 20.632361 | 138.05 | 64.88  | 32.88 | 15.45 |
| 1208 | MDF | Louangnamtha | 100.909367 | 20.594611 | 173.29 | 81.45  | 37.27 | 17.52 |
| 1209 | MDF | Bokeo        | NA         | NA        | 283.42 | 133.21 | 63.99 | 30.08 |
| 1210 | MDF | Bokeo        | 100.711492 | 20.548843 | 164.26 | 77.2   | 36.54 | 17.17 |
| 1211 | MDF | Bokeo        | 100.81146  | 20.557694 | 264.78 | 124.44 | 62.52 | 29.38 |
| 1212 | MDF | Louangnamtha | 101.080541 | 20.462055 | 194.89 | 91.6   | 46.3  | 21.76 |
| 1213 | MDF | Louangnamtha | 101.165374 | 20.467242 | 187.71 | 88.22  | 43.68 | 20.53 |
| 1215 | EF  | Houaphanh    | 104.323852 | 20.278423 | 235.87 | 110.86 | 56.2  | 26.41 |
| 1218 | EF  | Houaphanh    | 104.329941 | 20.111899 | 252.78 | 118.81 | 60.21 | 28.3  |
| 1219 | MDF | Houaphanh    | 103.435475 | 20.025422 | 267.45 | 125.7  | 63.53 | 29.86 |
| 1220 | MCB | Khammouane   | 105.172788 | 17.857024 | 198.77 | 93.42  | 47.49 | 22.32 |
| 1221 | MCB | Khammouane   | 105.201193 | 17.830771 | 258.95 | 121.71 | 61.55 | 28.93 |
| 1222 | MCB | Khammouane   | 105.243811 | 17.761611 | 272.23 | 127.95 | 65.01 | 30.56 |
| 1223 | MDF | Khammouane   | 105.338543 | 17.718139 | 155.64 | 73.15  | 35.65 | 16.76 |
| 1224 | MCB | Khammouane   | 105.358369 | 17.657128 | 284.52 | 133.72 | 67.68 | 31.81 |
| 1225 | CF  | Khammouane   | 105.434766 | 17.637088 | 89.47  | 42.05  | 28.17 | 13.24 |
| 1228 | MCB | Xekong       | 107.167969 | 15.410287 | 170    | 79.9   | 39.81 | 18.71 |
| 1229 | MDF | Champasak    | 105.392558 | 14.37611  | 36.91  | 17.35  | 6.72  | 3.16  |
| 1230 | MDF | Champasak    | NA         | NA        | 51.83  | 24.36  | 9.93  | 4.67  |
| 1231 | MCB | Xiengkhouang | 103.091225 | 19.683629 | 49.88  | 23.44  | 9.23  | 4.34  |
| 1232 | MCB | Xiengkhouang | 103.124845 | 19.684794 | 83.45  | 39.22  | 15.97 | 7.5   |
| 1234 | MCB | Xiengkhouang | 103.00292  | 19.631112 | 88.76  | 41.72  | 16.91 | 7.95  |
| 1235 | MCB | Xiengkhouang | 103.035423 | 19.64508  | 125.52 | 58.99  | 28.31 | 13.31 |
| 1236 | MCB | Xiengkhouang | 103.062756 | 19.637288 | 74.6   | 35.06  | 14.18 | 6.66  |
| 1237 | MCB | Xiengkhouang | 102.880317 | 19.590796 | 93.25  | 43.83  | 18.14 | 8.52  |
| 1239 | MDF | Xiengkhouang | 102.819785 | 19.429896 | 165.04 | 77.57  | 36.98 | 17.38 |
| 1240 | MCB | Xiengkhouang | 103.038078 | 19.340413 | 125.77 | 59.11  | 28.68 | 13.48 |
| 1241 | MCB | Xiengkhouang | 103.184611 | 19.350885 | 105.33 | 49.51  | 23.53 | 11.06 |
| 1242 | MDF | Vientiane    | 102.781011 | 18.402988 | 149.95 | 70.48  | 32.12 | 15.1  |
| 1243 | MCB | Khammouane   | 105.15531  | 17.86151  | 239.57 | 112.6  | 56.65 | 26.63 |
| 1244 | MCB | Khammouane   | 105.175939 | 17.836577 | 140.99 | 66.27  | 31.6  | 14.85 |
| 1245 | MCB | Khammouane   | 105.313838 | 17.691004 | 268.88 | 126.37 | 64.17 | 30.16 |
| 1246 | MCB | Khammouane   | 105.233339 | 17.634634 | 160.79 | 75.57  | 37.43 | 17.59 |
| 1247 | MCB | Salavan      | 106.706312 | 15.924735 | 82.31  | 38.68  | 15.2  | 7.15  |
| 1250 | CF  | Xekong       | 107.076009 | 15.412495 | 93.72  | 44.05  | 29.67 | 13.94 |
| 1257 | EF  | Houaphanh    | 104.677685 | 20.139508 | 394.27 | 185.31 | 94.37 | 44.36 |

| 1258 | MDF | Xaignabouly   | 101.195053 | 19.824752 | 216.32 | 101.67 | 50.76  | 23.86 |
|------|-----|---------------|------------|-----------|--------|--------|--------|-------|
| 1261 | MDF | Louangphabang | 102.372266 | 19.850181 | 174.92 | 82.21  | 34.51  | 16.22 |
| 1264 | MDF | Xaignabouly   | 100.753295 | 19.774917 | 81.92  | 38.5   | 17.43  | 8.19  |
| 1266 | MDF | Louangphabang | 102.575504 | 19.782328 | 122.32 | 57.49  | 26.9   | 12.64 |
| 1267 | MDF | Xaignabouly   | 101.2024   | 19.75482  | 143.55 | 67.47  | 29.28  | 13.76 |
| 1268 | DD  | Xaignabouly   | 100.46839  | 19.730798 | 52.93  | 24.88  | 9.62   | 4.52  |
| 1271 | MDF | Xiengkhouang  | 102.881514 | 19.70604  | 246.26 | 115.74 | 58.73  | 27.6  |
| 1272 | MDF | Xaignabouly   | 100.928349 | 19.665357 | 110.53 | 51.95  | 23.44  | 11.02 |
| 1273 | MDF | Xaignabouly   | 101.052597 | 19.668283 | 134.55 | 63.24  | 28.47  | 13.38 |
| 1274 | MDF | Xaignabouly   | 101.03674  | 19.628933 | 193.58 | 90.98  | 44.62  | 20.97 |
| 1275 | MDF | Louangphabang | 102.317722 | 19.631968 | 99.21  | 46.63  | 19.59  | 9.21  |
| 1277 | MDF | Xaignabouly   | 101.141617 | 19.59762  | 143.72 | 67.55  | 32.89  | 15.46 |
| 1278 | MDF | Xaignabouly   | 101.751313 | 19.580928 | 150.5  | 70.73  | 34.27  | 16.11 |
| 1279 | MDF | Louangphabang | 101.924442 | 19.601986 | 139.34 | 65.49  | 29.69  | 13.95 |
| 1283 | MDF | Xaignabouly   | NA         | NA        | 169.63 | 79.73  | 29.19  | 13.72 |
| 1285 | MDF | Xaignabouly   | 101.650167 | 19.511585 | 126.93 | 59.66  | 16.61  | 7.8   |
| 1286 | MDF | Xaignabouly   | 101.711824 | 19.508657 | 86.17  | 40.5   | 16.82  | 7.91  |
| 1287 | MDF | Xaignabouly   | 101.45497  | 19.464518 | 115.57 | 54.32  | 25.45  | 11.96 |
| 1289 | MDF | Xaignabouly   | 101.739615 | 19.450533 | 194.05 | 91.2   | 34.42  | 16.18 |
| 1295 | DD  | Xaignabouly   | 101.670825 | 19.350137 | 109.41 | 51.42  | 21.87  | 10.28 |
| 1296 | MDF | Xaignabouly   | 101.79662  | 19.324702 | 121.2  | 56.97  | 26.15  | 12.29 |
| 1298 | DD  | Xaignabouly   | 101.769606 | 19.306921 | 85.42  | 40.15  | 18.62  | 8.75  |
| 1303 | DD  | Xaignabouly   | 101.419494 | 19.202066 | 142.06 | 66.77  | 32.59  | 15.32 |
| 1305 | DD  | Xaignabouly   | 101.602615 | 19.120159 | 106.47 | 50.04  | 22.2   | 10.44 |
| 1306 | DD  | Xaignabouly   | 101.654992 | 19.117414 | 89.58  | 42.1   | 16.83  | 7.91  |
| 1308 | MDF | Xaignabouly   | 101.592717 | 19.081139 | 123.07 | 57.84  | 21.3   | 10.01 |
| 1311 | MDF | Xaisomboun    | 103.507085 | 19.080946 | 180.48 | 84.83  | 41.18  | 19.35 |
| 1312 | DD  | Xaignabouly   | 101.789739 | 18.975677 | 52.19  | 24.53  | 6.26   | 2.94  |
| 1314 | MDF | Xaisomboun    | NA         | NA        | 101.59 | 47.75  | 20.07  | 9.43  |
| 1315 | MDF | Xaisomboun    | 103.670499 | 18.974937 | 111.36 | 52.34  | 22.65  | 10.65 |
| 1319 | MDF | Xaignabouly   | 101.651742 | 18.845377 | 156.06 | 73.35  | 36.06  | 16.95 |
| 1320 | MDF | Xaignabouly   | 101.47554  | 18.743289 | 200.76 | 94.36  | 42.6   | 20.02 |
| 1322 | MDF | Xaignabouly   | 101.532588 | 18.696529 | 169.33 | 79.58  | 36.6   | 17.2  |
| 1323 | EF  | Bolikhamxay   | 104.129135 | 18.727584 | 432.66 | 203.35 | 103.49 | 48.64 |
| 1325 | MDF | Vientiane     | 102.489253 | 18.671343 | 169.61 | 79.72  | 31.26  | 14.69 |
| 1329 | MDF | Bolikhamxay   | 104.778412 | 18.679988 | 177.51 | 83.43  | 40.67  | 19.11 |
| 1330 | MDF | Bolikhamxay   | 104.821921 | 18.678192 | 173.58 | 81.58  | 39.19  | 18.42 |
| 1331 | MDF | Vientiane     | 102.207054 | 18.629444 | 133.64 | 62.81  | 27.38  | 12.87 |
| 1336 | MDF | Vientiane     | 102.083558 | 18.568245 | 101.19 | 47.56  | 17.89  | 8.41  |
| 1337 | MDF | Xaignabouly   | 101.379051 | 18.501322 | 141.19 | 66.36  | 27.65  | 12.99 |
| 1342 | EF  | Bolikhamxay   | 104.1413   | 18.461799 | 422.07 | 198.37 | 100.75 | 47.35 |
| 1343 | MDF | Xaignabouly   | 101.263588 | 18.339835 | 207.6  | 97.57  | 48.85  | 22.96 |
| 1345 | MDF | Bolikhamxay   | 103.123254 | 18.335643 | 132.01 | 62.04  | 28.29  | 13.29 |
| 1346 | MDF | Phongsaly     | NA         | NA        | 126.19 | 59.31  | 27.89  | 13.11 |

| 1353 | MDF | Vientiane Capital | 102.319683 | 18.103153 | 135.24 | 63.56  | 24.92 | 11.71 |
|------|-----|-------------------|------------|-----------|--------|--------|-------|-------|
| 1354 | MDF | Xaignabouly       | 101.091628 | 17.735138 | 229.41 | 107.82 | 37.55 | 17.65 |
| 1356 | MDF | Xaignabouly       | 101.173218 | 17.600014 | 125.38 | 58.93  | 27.68 | 13.01 |
| 1357 | MDF | Savannakhet       | 105.341274 | 17.055546 | 198.17 | 93.14  | 45.37 | 21.32 |
| 1362 | DD  | Savannakhet       | 105.312759 | 16.565511 | 61.33  | 28.82  | 11.55 | 5.43  |
| 1363 | DD  | Savannakhet       | 105.262529 | 16.447671 | 81.15  | 38.14  | 15.36 | 7.22  |
| 1364 | MDF | Savannakhet       | 105.257108 | 16.424883 | 120.57 | 56.67  | 26.76 | 12.57 |
| 1366 | DD  | Savannakhet       | 105.821695 | 16.339014 | 45.62  | 21.44  | 8.29  | 3.89  |
| 1368 | MDF | Savannakhet       | 105.587922 | 16.132234 | 106.72 | 50.16  | 20.39 | 9.58  |
| 1369 | MDF | Salavan           | 106.496314 | 16.003064 | 136.59 | 64.2   | 21.5  | 10.11 |
| 1370 | MDF | Salavan           | 105.656464 | 15.901519 | 146.47 | 68.84  | 31.73 | 14.91 |
| 1371 | MDF | Salavan           | 106.548246 | 15.905007 | 136    | 63.92  | 11.3  | 5.31  |
| 1372 | MDF | Salavan           | 106.608173 | 15.889448 | 199.42 | 93.73  | 33.66 | 15.82 |
| 1373 | MDF | Salavan           | 106.591577 | 15.861685 | 109.11 | 51.28  | 21.06 | 9.9   |
| 1374 | MDF | Salavan           | 106.612126 | 15.843008 | 182.64 | 85.84  | 30.99 | 14.56 |
| 1375 | DD  | Salavan           | 105.73411  | 15.702256 | 72.21  | 33.94  | 11.74 | 5.52  |
| 1376 | MDF | Salavan           | 106.671238 | 15.65592  | 160.23 | 75.31  | 36.53 | 17.17 |
| 1377 | MDF | Champasak         | 106.027941 | 15.344579 | 161.83 | 76.06  | 36.89 | 17.34 |
| 1378 | MDF | Phongsaly         | NA         | NA        | 109.4  | 51.42  | 24.16 | 11.36 |
| 1383 | MDF | Attapeu           | 106.975268 | 15.028344 | 134.21 | 63.08  | 28.89 | 13.58 |
| 1384 | MDF | Champasak         | 106.041424 | 14.982391 | 72.17  | 33.92  | 13.93 | 6.55  |
| 1387 | MDF | Attapeu           | 107.315577 | 14.809543 | 111.06 | 52.2   | 24.2  | 11.38 |
| 1388 | MDF | Attapeu           | 107.195218 | 14.769506 | 46.87  | 22.03  | 6.96  | 3.27  |
| 1390 | MDF | Attapeu           | 106.864079 | 14.57545  | 104.99 | 49.34  | 15.22 | 7.15  |
| 1391 | MDF | Champasak         | 105.569864 | 14.540468 | 74.37  | 34.95  | 15.73 | 7.39  |
| 1392 | MDF | Attapeu           | 106.88385  | 14.533315 | 84.7   | 39.81  | 16.32 | 7.67  |
| 1394 | EF  | Champasak         | 105.974781 | 14.366909 | 158.09 | 74.3   | 36.36 | 17.09 |
| 1397 | MDF | Champasak         | 105.73055  | 14.225998 | 95.72  | 44.99  | 19.86 | 9.34  |
| 1398 | DD  | Champasak         | 105.483465 | 14.143479 | 48.66  | 22.87  | 9.27  | 4.36  |
| 1399 | MDF | Louangnamtha      | 101.199216 | 21.507748 | 128.58 | 60.43  | 27.57 | 12.96 |
| 1402 | MDF | Phongsaly         | NA         | NA        | 188.52 | 88.6   | 44.63 | 20.98 |
| 1403 | MDF | Phongsaly         | NA         | NA        | 93.52  | 43.95  | 18.39 | 8.64  |
| 1405 | MDF | Louangnamtha      | 101.376809 | 21.212317 | 195.8  | 92.03  | 46.55 | 21.88 |
| 1406 | MDF | Phongsaly         | NA         | NA        | 80.2   | 37.69  | 15.79 | 7.42  |
| 1410 | MDF | Phongsaly         | NA         | NA        | 116.35 | 54.68  | 24.5  | 11.51 |
| 1411 | MDF | Louangnamtha      | 101.60363  | 20.960588 | 189.37 | 89     | 42.73 | 20.08 |
| 1416 | MDF | Louangnamtha      | 101.620555 | 20.892823 | 200.23 | 94.11  | 45.95 | 21.6  |
| 1418 | MDF | Louangnamtha      | 100.836495 | 20.801849 | 70.21  | 33     | 13    | 6.11  |
| 1424 | MDF | Louangnamtha      | 100.845405 | 20.786642 | 118.84 | 55.86  | 19.07 | 8.96  |
| 1426 | MDF | Bokeo             | NA         | NA        | 100.35 | 47.16  | 18.19 | 8.55  |
| 1428 | MDF | Oudomxai          | 101.577101 | 20.723369 | 82.94  | 38.98  | 14.28 | 6.71  |
| 1433 | MDF | Louangnamtha      | 100.902209 | 20.652739 | 247.17 | 116.17 | 57.65 | 27.1  |
| 1435 | MDF | Louangnamtha      | 100.892352 | 20.606185 | 178.52 | 83.9   | 37.66 | 17.7  |
| 1438 | MDF | Louangnamtha      | 101.400574 | 20.571857 | 169.72 | 79.77  | 35.93 | 16.89 |

| 1439 | MDF | Louangnamtha  | 101.541308 | 20.549926 | 140.73 | 66.14  | 14.62 | 6.87  |
|------|-----|---------------|------------|-----------|--------|--------|-------|-------|
| 1441 | MDF | Oudomxai      | 101.914825 | 20.541029 | 164.84 | 77.48  | 39.13 | 18.39 |
| 1443 | MDF | Oudomxai      | 102.012696 | 20.526258 | 201.28 | 94.6   | 48.06 | 22.59 |
| 1444 | MDF | Louangnamtha  | 101.045316 | 20.477798 | 74.6   | 35.06  | 14.3  | 6.72  |
| 1445 | MDF | Louangnamtha  | 101.294528 | 20.477899 | 145.81 | 68.53  | 33.57 | 15.78 |
| 1446 | MDF | Oudomxai      | 101.866421 | 20.460149 | 187.3  | 88.03  | 41.78 | 19.64 |
| 1447 | MDF | Louangphabang | 103.053296 | 20.469889 | 220.33 | 103.56 | 49.41 | 23.22 |
| 1449 | MDF | Bokeo         | 100.972603 | 20.407691 | 226.6  | 106.5  | 53.95 | 25.35 |
| 1450 | MDF | Louangphabang | 102.636631 | 20.426864 | 150.32 | 70.65  | 29.47 | 13.85 |
| 1451 | MDF | Oudomxai      | 101.765459 | 20.37661  | 167.51 | 78.73  | 36.56 | 17.18 |
| 1456 | MDF | Louangphabang | 102.52464  | 20.327727 | 155.58 | 73.12  | 35.45 | 16.66 |
| 1457 | MDF | Bokeo         | 100.417036 | 20.294353 | 91.55  | 43.03  | 19.71 | 9.26  |
| 1459 | MDF | Bokeo         | 100.945784 | 20.244902 | 104.09 | 48.92  | 21.86 | 10.28 |
| 1463 | MDF | Bokeo         | 100.87622  | 20.219634 | 112.75 | 52.99  | 25.04 | 11.77 |
| 1464 | MDF | Oudomxai      | 101.935304 | 20.245237 | 67.89  | 31.91  | 13.34 | 6.27  |
| 1465 | MDF | Oudomxai      | 101.994089 | 20.234263 | 65.1   | 30.6   | 12.77 | 6     |
| 1466 | MDF | Bokeo         | 100.896989 | 20.117019 | 78.37  | 36.84  | 13.81 | 6.49  |
| 1467 | MDF | Bokeo         | 100.909508 | 20.093251 | 37.25  | 17.51  | 5.12  | 2.41  |
| 1469 | MDF | Oudomxai      | 101.821066 | 20.089323 | 128.33 | 60.32  | 27.54 | 12.94 |
| 1471 | MDF | Louangphabang | 103.014223 | 20.096353 | 216.11 | 101.57 | 42.62 | 20.03 |
| 1472 | MDF | Oudomxai      | 101.689503 | 20.044728 | 192.36 | 90.41  | 44.8  | 21.06 |
| 1473 | MDF | Oudomxai      | 101.730356 | 20.037054 | 134.63 | 63.27  | 30.82 | 14.49 |
| 1474 | MDF | Oudomxai      | 101.602915 | 19.948678 | 185.86 | 87.35  | 43.41 | 20.4  |
| 1475 | DD  | Louangphabang | 102.116542 | 19.948462 | 149.61 | 70.32  | 34.83 | 16.37 |
| 1476 | DD  | Louangphabang | 102.143983 | 19.950149 | 59.55  | 27.99  | 11.43 | 5.37  |
| 1477 | MDF | Oudomxai      | 101.177632 | 19.894294 | 111.6  | 52.45  | 17.67 | 8.31  |
| 1478 | MDF | Oudomxai      | 101.423788 | 19.920546 | 120.64 | 56.7   | 26.5  | 12.45 |

# 8.4 QC Survey Plot Information

|                |                  |                |                      | QC Sampling |       |             |                      | Normal sampling |       |             |            |
|----------------|------------------|----------------|----------------------|-------------|-------|-------------|----------------------|-----------------|-------|-------------|------------|
| Plot<br>number | Province<br>Name | Forest<br>type | C<br>stock<br>(t/ha) | S.D.        | S.E.  | CI<br>(95%) | C<br>stock<br>(t/ha) | S.D.            | S.E.  | CI<br>(95%) | p<br>value |
| 1039           | Savannakhet      | DD             | 36.96                | 26.50       | 15.30 | 29.98       | 28.94                | 29.08           | 14.54 | 28.49       | 0.764      |
| 1042           | Savannakhet      | DD             | 39.17                | 11.86       | 5.93  | 11.62       | 33.20                | 10.61           | 5.30  | 10.40       | 0.446      |
| 1046           | Savannakhet      | DD             | 50.66                | 18.98       | 10.96 | 21.48       | 34.59                | 26.66           | 13.33 | 26.13       | 0.545      |
| 1053           | Savannakhet      | DD             | 54.28                | 25.96       | 12.98 | 25.44       | 50.84                | 18.49           | 9.25  | 18.12       | 1          |
| 1058           | Savannakhet      | DD             | 53.74                | 21.93       | 10.96 | 21.49       | 50.94                | 19.06           | 9.53  | 18.68       | 0.632      |
| 1062           | Savannakhet      | DD             | 36.49                | 37.01       | 18.51 | 36.27       | 41.67                | 38.22           | 19.11 | 37.45       | 1          |
| 1064           | Savannakhet      | MDF            | 80.01                | 31.49       | 18.18 | 35.63       | 57.75                | 51.26           | 25.63 | 50.24       | 0.538      |
| 1069           | Savannakhet      | DD             | 66.08                | 33.44       | 16.72 | 32.77       | 54.34                | 26.24           | 13.12 | 25.72       | 0.446      |
| 1070           | Savannakhet      | DD             | 58.05                | 27.52       | 13.76 | 26.97       | 62.83                | 31.15           | 15.58 | 30.53       | 0.8        |
| 1121           | Champasak        | DD             | 35.05                | 17.91       | 8.96  | 17.55       | 35.82                | 24.93           | 12.47 | 24.43       | 1          |
| 1124           | Champasak        | DD             | 48.42                | 27.07       | 13.54 | 26.53       | 44.00                | 30.22           | 15.11 | 29.62       | 0.632      |
| 1130           | Champasak        | DD             | 56.13                | 27.48       | 13.74 | 26.93       | 46.84                | 24.12           | 12.06 | 23.64       | 0.6        |
| 1140           | Xaignabouly      | MDF            | 62.86                | 24.29       | 12.15 | 23.81       | 57.18                | 15.01           | 7.50  | 14.71       | 0.816      |
| 1159           | Bolikhamxay      | MDF            | 87.57                | 60.49       | 30.24 | 59.28       | 120.71               | 101.26          | 50.63 | 99.23       | 0.6        |
| 1160           | Bolikhamxay      | EF             | 91.26                | 43.22       | 21.61 | 42.35       | 151.32               | 80.11           | 40.05 | 78.51       | 0.258      |
| 1164           | Bolikhamxay      | EF             | 129.76               | 35.34       | 17.67 | 34.63       | 169.55               | 22.72           | 11.36 | 22.26       | 0.187      |
| 1167           | Bolikhamxay      | MDF            | 109.08               | 39.30       | 19.65 | 38.52       | 109.68               | 40.47           | 20.23 | 39.66       | 1          |

| 1180 | Savannakhet      | MDF | 45.34  | 11.46 | 5.73  | 11.23 | 74.49  | 36.78 | 18.39 | 36.04 | 0.187 |
|------|------------------|-----|--------|-------|-------|-------|--------|-------|-------|-------|-------|
| 1181 | Savannakhet      | MDF | 102.32 | 21.15 | 10.57 | 20.72 | 117.45 | 29.34 | 14.67 | 28.75 | 0.632 |
| 1184 | Savannakhet      | MDF | 98.66  | 37.27 | 18.64 | 36.53 | 98.45  | 27.24 | 13.62 | 26.70 | 0.816 |
| 1201 | Oudomxai         | MDF | 139.17 | 40.89 | 20.45 | 40.08 | 135.58 | 45.32 | 22.66 | 44.42 | 1     |
| 1228 | Xekong           | MCB | 114.36 | 49.50 | 28.58 | 56.01 | 98.59  | 13.35 | 7.71  | 15.10 | 0.644 |
| 1229 | Champasak        | MDF | 52.82  | 24.86 | 12.43 | 24.36 | 9.83   | 10.92 | 5.46  | 10.70 | 0.073 |
| 1231 | Xiengkhouan<br>g | MCB | 17.60  | 13.77 | 6.89  | 13.50 | 20.83  | 16.64 | 8.32  | 16.31 | 0.694 |
| 1236 | Xiengkhouan<br>g | MCB | 36.49  | 9.15  | 4.58  | 8.97  | 41.26  | 10.37 | 5.18  | 10.16 | 0.446 |
| 1250 | Xekong           | CF  | 99.93  | 33.73 | 16.87 | 33.06 | 57.61  | 26.46 | 13.23 | 25.93 | 0.258 |
| 1283 | Xaignabouly      | MDF | 96.14  | 69.72 | 34.86 | 68.33 | 83.67  | 47.99 | 24.00 | 47.03 | 0.8   |
| 1286 | Xaignabouly      | MDF | 52.83  | 14.28 | 7.14  | 13.99 | 47.97  | 14.93 | 7.46  | 14.63 | 0.258 |
| 1308 | Xaignabouly      | MDF | 0.02   | 0.04  | 0.02  | 0.04  | 63.68  | 37.65 | 21.74 | 42.60 | 0.973 |
| 1319 | Xaignabouly      | MDF | 85.67  | 44.52 | 22.26 | 43.63 | 91.33  | 54.83 | 27.42 | 53.74 | 1     |
| 1320 | Xaignabouly      | MDF | 85.58  | 52.87 | 26.43 | 51.81 | 108.53 | 81.28 | 40.64 | 79.65 | 0.6   |
| 1368 | Savannakhet      | MDF | 58.11  | 8.30  | 4.15  | 8.14  | 60.32  | 5.30  | 2.65  | 5.20  | 0.8   |
| 1391 | Champasak        | MDF | 52.76  | 36.31 | 18.15 | 35.58 | 41.14  | 33.77 | 16.89 | 33.09 | 0.6   |
| 1411 | Louangnamt<br>ha | MDF | 129.28 | 74.48 | 37.24 | 72.99 | 109.07 | 69.74 | 34.87 | 68.34 | 0.313 |
| 1428 | Oudomxai         | MDF | 51.24  | 2.87  | 1.66  | 3.25  | 45.43  | 5.67  | 3.27  | 6.41  | 0.191 |